全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分数阶奇异系统容许性的充分必要条件

DOI: 10.3724/SP.J.1004.2013.02160, PP. 2160-2163

Keywords: 分数阶奇异系统,正则性,无脉冲性,容许性

Full-Text   Cite this paper   Add to My Lib

Abstract:

?探讨了阶数在(0,1)区间的分数阶奇异系统的容许性条件.文中首先给出了正则性,无脉冲性和容许性的定义,然后给出了分数阶奇异系统容许性的充分必要条件,最后通过数值仿真的例子来说明我们给出的容许性条件.

References

[1]  Podlubny I. Fractional Differential Equations. New York: Academic Press, 1999. 38-52
[2]  McAdams E T, Lackermeier A, McLaughlin J A, Macken D, Jossinet J. The linear and non-linear electrical properties of the electrode-electrolyte interface. Biosensors and Bioelectronics, 1995, 10(1-2): 67-74
[3]  Makris N, Constantinou M C. Fractional-derivative Maxwell model for viscous dampers. Journal of Structural Engineering, 1991, 117(9): 2708-2724
[4]  Clerc J P, Tremblay A M S, Albinet G, Mitescu C D. a.c. response of fractal networks. Journal de Physique Letters, 1984, 45: 913-924
[5]  Monje C A, Chen Y Q, Vinagre B M, Xue D Y, Feliu-Batlle V. Fractional-order Systems and Controls: Fundamentals and Applications. London: Springer-Verlag, 2010. 37-78
[6]  Guo T L. Controllability and observability of impulsive fractional linear time-invariant system. Computers & Mathematics with Applications, 2012, 64(10): 3171-3182
[7]  Oustaloup A, Mathieu B, Lanusse P. The CRONE control of resonant plants: application to a flexible transmission. European Journal of Control, 1995, 1: 113-121
[8]  Lu J G, Chen G R. Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Transactions on Automatic Control, 2009, 54(6): 1294-1299
[9]  Hwang C, Cheng Y C. A numerical algorithm for stability testing of fractional delay systems. Automatica, 2006, 42(5): 825-831
[10]  Ding Y S, Wang Z D, Ye H P. Optimal control of a fractional-order HIV-immune system with memory. IEEE Transactions on Control Systems Technology, 2012, 20(3): 763-769
[11]  Gabano J D, Poinot T, Kanoun H. Identification of a thermal system using continuous linear parameter-varying fractional modelling. IET Control Theory and Applications, 2011, 5(7): 889-899
[12]  Gao Zhe, Liao Xiao-Zhong. Robust stability criteria for interval fractional-order systems: the 0 < α < 1 case. Acta Automatica Sinica, 2012, 38(2): 175-182 (in Chinese)
[13]  Lewis F L. A survey of linear singular systems. Circuits, Systems and Signal Processing, 1986, 5(1): 3-36
[14]  Fang C H, Lee L, Chang F R. Robust control analysis and design for discrete-time singular systems. Automatica, 1994, 30(11): 1741-1750
[15]  Oldham K B, Spanier J. The Fractional Calculus. New York and London: Academic Press, 1974. 69-83
[16]  Ichise M, Nagayanagi Y, Kojima T. An analog simulation of non-integer order transfer functions for analysis of electrode processes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 33(2): 253-265
[17]  Gaul L, Klein P, Kemple S. Damping description involving fractional operators. Mechanical Systems and Signal Processing, 1991, 5(2): 81-88
[18]  Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastically damped structures. Journal of Guidance, Control, and Dynamics, 1991, 14(2): 304-311
[19]  Gao Xin, Yu Jue-Bang. Synchronization of two coupled fractional-order chaotic oscillators. Chaos, Solitons and Fractals, 2005, 26(1): 141-145
[20]  Gao Zhe, Liao Xiao-Zhong. A stability criterion for linear fractional order systems in frequency domain. Acta Automatica Sinica, 2011, 37(11): 1387-1394 (in Chinese)
[21]  Podlubny I. Fractional-order systems and PIλ Dμ controllers. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214
[22]  Ahn H S, Chen Y Q. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica, 2008, 44(11): 2985-2988
[23]  Lu J G, Chen Y Q. Robust stability and stabilization of fractional-order interval systems with the fractional order α: the 0 < α < 1 case. IEEE Transactions on Automatic Control, 2010, 55(1): 152-158
[24]  Gao Z, Liao X Z. Robust stability criterion of fractional-order functions for interval fractional-order systems. IET Control Theory and Applications, 2013, 7(1): 60-67
[25]  Zhu Cheng-Xiang, Zou Yun. Simultaneous identification of fractional-order system structure and order and parameters based on alternately transforming condensed information matrix. Acta Automatica Sinica, 2012, 38(8): 1280-1287 (in Chinese)
[26]  Jin Y, Chen Y Q, Xue D Y. Time-constant robust analysis of a fractional order[proportional derivative] controller. IET Control Theory and Applications, 2011, 5(1): 164-172
[27]  Dai L Y. Singular Control Systems. Berlin: Springer-Verlag, 1989. 79-98
[28]  Fang C H, Chang F R. Analysis of stability robustness for generalized state-space systems with structured perturbations. Systems and Control Letters, 1993, 21(2): 109-114
[29]  N'Doye I, Zasadzinski M, Darouach M, Radhy N E. Regularization and stabilization of singular fractional-order systems. In: Proceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications. Badajoz, Spain: IFAC, 2010. 145-149

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133