全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

去除椒盐噪声的交替方向法

DOI: 10.3724/SP.J.1004.2013.02071, PP. 2071-2076

Keywords: 图像去噪,凸优化,l1范数,核范数,交替方向法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?传统图像去噪法基于有用信息和噪声频率特性的差别实现去噪,实际中,有用信息和噪声在频带上往往存在重叠,因此,传统去噪法在抑制噪声的同时,往往损失了细节信息,使图像变模糊.本文引入稀疏与低秩矩阵分解模型描述图像去噪问题,基于该模型,采用交替方向法(Alternatingdirectionmethod,ADM)得到复原图像.实验证明该方法比常用的中值滤波法更有效地抑制了椒盐噪声,同时更好地保持了原始图像的细节信息.

References

[1]  Wang Jian-Ying, Yin Zhong-Ke, Zhang Chun-Mei. Sparse Decomposition and Preliminary Application of Signal and Image. Chengdu: Southwest Jiaotong University Press, 2006. 140-141(王建英, 尹忠科, 张春梅. 信号与图像的稀疏分解及初步应用. 成都: 西南交通大学出版社, 2006. 140-141)
[2]  Zhao Rui-Zhen, Liu Xiao-Yu, Li Ching-Chung, Sclabassi R J, Sun Min-Gui. Wavelet domain image denoising via sparse representation. Scientia Sinica Informations, 2010, 40(1): 33-44(赵瑞珍, 刘晓宇, Li Ching-Chung, Sclabassi R J, 孙民贵. 基于稀疏表示的小波去噪. 中国科学: 信息科学, 2010, 40(1): 33-44)
[3]  Candés E, Li X D, Ma Y, Wright J. Robust principal component analysis? Journal of the ACM, 2011, 58(3): 1-39
[4]  Tibshirani R. Regression shrinkage and selection via the LASSO: a retrospective. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 2011, 73(3): 273-282
[5]  Chandrasekara V, Sanghavi S, Parrilo P A, Willsky A S. Sparse and low-rank matrix decompositions. In: Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing. Monticello, USA: IEEE, 2009. 962-967
[6]  Chandrasekaran V, Sanghavi S, Parrilo P A, Willsky A S. Rank-sparsity incoherence for matrix decomposition. SIAM Journal on Optimization, 2011, 21(2): 572-596
[7]  Afonso M V, Bioucas-Dias J M, Figueiredo M A T. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Transactions on Image Processing, 2011, 20(3): 681-695
[8]  Schechter M. More on subgradient duality. Journal of Mathematical Analysis and Applications, 1979, 71(1): 251-262
[9]  Larsen R M. PROPACK-Software for large and sparse SVD calculations[Online], available: http://soi.stanford.edu/ rmunk/PROPACK/, June 30, 2012
[10]  He B S, Liao L Z, Han D R, Yang H. A new inexact alternating directions method for monotone variational inequalities. Mathematical Programming, 2002, 92(1): 103-118
[11]  Yang Hui-Xian, Wang Xu-Si, Xie Peng-He, Leng Ai-Lian, Peng You. Infrared image denoising based on improved threshold and inter-SCAle correlations of wavelet transform. Acta Automatica Sinica, 2011, 37(10): 1167-1174(杨恢先, 王绪四, 谢鹏鹤, 冷爱莲, 彭友. 改进阈值与尺度间相关的小波红外图像去噪. 自动化学报, 2011, 37(10): 1167-1174)
[12]  Yin Zhong-Ke, Xie Mei, Wang Jian-Ying. Image denoising based on its sparse decomposition. Journal of University of Electronic Science and Technology of China, 2007, 35(6): 876-878(尹忠科, 解梅, 王建英. 基于稀疏分解的图像去噪. 电子科技大学学报, 2007, 35(6): 876-878)
[13]  Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306
[14]  Donoho D L, Tsaig Y. Extensions of compressed sensing. Signal Processing, 2006, 86(3): 549-571
[15]  Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597
[16]  Yang J F, Zhang Y. Alternating direction algorithms for l1-problems in compressive sensing. SIAM Journal on Scientific Computing, 2011, 33(1): 250-278
[17]  Candes E J, Tao T. The power of convex relaxation: near-optimal matrix completion. IEEE Transactions on Information Theory, 2010, 56(5): 2053-2080
[18]  Bertsekas D P. Constrained Optimization and Lagrange Multiplier Methods. New York: Academic Press, 1982. 10-350
[19]  Schechter M. A subgradient duality theorem. Journal of Mathematical Analysis and Applications, 1977, 61(3): 850-855
[20]  Ma S Q, Goldfarb D, Chen L F. Fixed point and Bregman iterative methods for matrix rank minimization. Mathematical Programming, 2011, 128(1-2): 321-353
[21]  He B S, Yang H. Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Operations Research Letters, 1998, 23(3-5): 151-161
[22]  Ye C H, Yuan X M. A descent method for structured monotone variational inequalities. Optimization Methods and Software, 2007, 22(2): 329-338

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133