全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

活体光学投影断层成像系统与应用

DOI: 10.3724/SP.J.1004.2013.02043, PP. 2043-2050

Keywords: 光学投影断层成像,活体成像,绿色荧光蛋白,果蝇蛹,显微成像

Full-Text   Cite this paper   Add to My Lib

Abstract:

?光学投影断层成像(Opticalprojectiontomography,OPT)技术可以对1~10mm尺度的低散射生物样本进行激发成像,具有微米级的空间分辨率、无辐射、成本低等特点,为小尺寸生物样本的高分辨率三维成像提供了一种新的手段.OPT最早通过对离体生物组织如小鼠胚胎、小鼠器官等成像,进行药物疗效评估、基因表达等研究,但是离体成像不能动态、完整地反映生物组织的变化,因此活体成像技术逐渐成为OPT领域的研究热点.本文详细介绍了我们自主研发的活体OPT系统,该成像系统以准直激光器为光源单元,高精密移动和旋转电控平台为样本定位单元,低温电子倍增(Electronmultiplying,EM)CCD探测器为采集单元,实现了针对果蝇蛹等小模式动物的活体三维成像.该系统的空间分辨率优于10μm,成像视野1~10mm,扫描时间小于2min,重建时间小于5s.最后,本文通过果蝇蛹的三维活体成像实验展示该系统的操作流程、成像结果和初步的生物应用.

References

[1]  Kobayashi H, Kawamoto S, Brechbiel M W, Jo S K, Hu X Z, Yang T X, Diwan B A, Waldmann T A, Schnermann J, Choyke P L, Star R A. Micro-MRI methods to detect renal cysts in mice. Kidney International, 2004, 65(4): 1511-1516
[2]  Jan M L, Chuang K S, Chen G W, Ni Y C, Chen S, Chang C H, et al. A three-dimensional registration method for automated fusion of micro PET-CT-SPECT whole-body images. IEEE Transactions on Medical Imaging, 2005, 24(7): 886-893
[3]  Parrozzani R, Lazzarini D, Dario A, Midena E. In vivo confocal microscopy of ocular surface squamous neoplasia. Eye, 2011, 25(4): 455-460
[4]  Thomas A, Newton J, Oldham M. A method to correct for stray light in telecentric optical ——CT imaging of radiochromic dosimeters. Physics in Medicine and Biology, 2011, 56(14): 4433-4451
[5]  Boot M J, Westerberg C H, Sanz-Ezquerro J, Cotterell J, Schweitzer R, Torres M, Sharpe J. In vitro whole-organ imaging: 4D quantification of growing mouse limb buds. Nature Methods, 2008, 5(7): 609-612
[6]  Bassi A, Fieramonti L, D'Andrea C, Mione M, Valentini G. In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography. Journal of Biomedical Optics, 2011, 16(10): 100502
[7]  Fauver M, Seibel E J, Rahn J R, Meyer M G, Patten F W, Neumann T, Nelson A. Three-dimensional imaging of single isolated cell nuclei using optical projection tomography. Optics Express, 2005, 13(11): 4210-4223
[8]  Dong D, Zhu S P, Qin C H, Kumar V, Stein J V, Oehler S, Savakis C, Tian J, Ripoll J. Automated recovery of the center of rotation in optical projection tomography in the presence of SCAttering. IEEE Journal of Biomedical and Health Informatics, 2013, 17(1): 198-204
[9]  Azevedo S G, Schneberk D J, Fitch J P, Martz H E. Calculation of the rotational centers in computed tomography sinograms. IEEE Transactions on Nuclear Science, 1990, 37(4): 1525-1540
[10]  Kak A C, Slaney M. Principles of Computerized Tomographic Imaging. Philadelphia: Society for Industrial and Applied Mathematics, 2001
[11]  Zhu S P, Dong D, Birk U J, Rieckher M, Tavernarakis N, Qu X C, Liang J, Tian J, Ripoll J. Automated motion correction for in vivo optical projection tomography. IEEE Transactions on Medical Imaging, 2012, 31(7): 1358-1371
[12]  Yang F, Li Q D, Xiang D H, Cao Y, Tian J. A versatile optical model for hybrid rendering of volume data. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(6): 925-937
[13]  Megason S G, Fraser S E. Imaging in systems biology. Cell, 2007, 130(5): 784-795
[14]  Dong D, Tian J, Dai Y K, Yan G R, Yang F, Wu P. Unified reconstruction framework for multi-modal medical imaging. Journal of X-Ray Science and Technology, 2011, 19(1): 111-126
[15]  Robles F E, Wilson C, Grant G, Wax A. Molecular imaging true-colour spectroscopic optical coherence tomography. Nature Photonics, 2011, 5(12): 744-747
[16]  Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sorensen J, Baldock R, Davidson D. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science, 2002, 296(5567): 541-545
[17]  Doran S J, Koerkamp K K, Bero M A, Jenneson P, Morton E J, Gilboy W B. A CCD-based optical CT SCAnner for high-resolution 3D imaging of radiation dose distributions: equipment specifications, optical simulations and preliminary results. Physics in Medicine and Biology, 2001, 46(12): 3191-3213
[18]  Rieckher M, Birk U J, Meyer H, Ripoll J, Tavernarakis N. Microscopic optical projection tomography in vivo. PLoS One, 2011, 6(4): e18963
[19]  Chen L L, McGinty J, Taylor H B, Bugeon L, Lamb J R, Dallman M J, French P M. Incorporation of an experimentally determined MTF for spatial frequency filtering and deconvolution during optical projection tomography reconstruction. Optics Express, 2012, 20(7): 7323-7337
[20]  Vinegoni C, Pitsouli C, Razansky D, Perrimon N, Ntziachristos V. In vivo imaging of drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nature Methods, 2008, 5(1): 45-47
[21]  Tian J, Xue J, Dai Y K, Chen J, Zheng J. A novel software platform for medical image processing and analyzing. IEEE Transactions on Information Technology in Biomedicine, 2008, 12(6): 800-812
[22]  Wang Y, Wang R K. Imaging using parallel integrals in optical projection tomography. Physics in Medicine and Biology, 2006, 51(23): 6023-6032
[23]  Sun B H, Xu P Z, Salvaterra P M. Dynamic visualization of nervous system in live drosophila. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(18): 10438-10443
[24]  Tsien R Y. The green fluorescent protein. Annual Review of Biochemistry, 1998, 67(1): 509-544
[25]  Xiang D H, Tian J, Yang F, Yang Q, Zhang X, Li Q D, Liu X. Skeleton cuts ——an efficient segmentation method for volume rendering. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(9): 1295-1306

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133