全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

仿生机器鱼S形起动的控制与实现

DOI: 10.3724/SP.J.1004.2013.01914, PP. 1914-1922

Keywords: 仿生机器鱼,快速起动,S形起动,转向运动

Full-Text   Cite this paper   Add to My Lib

Abstract:

?给出一种仿生机器鱼S形起动的控制方法.结合北美狗鱼S形起动的形态特征及水动力学知识,建立了多关节链式结构仿生机器鱼的S形起动模型.整个过程设计为两个阶段:1)弯曲阶段:以转向速度最大化为目标.在鱼体S形变保证重心稳定平移的前提下,增大较长转向力臂处的转向力矩,提高转向速度,使鱼体迅速转向目标方向.2)伸展阶段:以增大前推力为目标.始终保持部分将要伸展的鱼体垂直前进方向,以L形滑动方式打开鱼体.同时,为保证转向精度,采用模糊控制调节已展开鱼体关节的小角度转动,实时纠正鱼体展开所引起的游动方向偏离.在S形起动末期,采用变幅值——频率的中枢模式发生器(Centralpatterngenerator,CPG)实现向稳态游动方式的过渡:前期为保证游动方向及获取较大推进力,采用小幅值——高频率的CPG信号,后期则进入大幅值——低频率的稳态游动.最终,采用四关节仿生机器鱼验证了该方法的有效性,实现了峰值转速为318.08±9.20°/s、转向误差为1.03±0.48°的较好结果,对提升水下游动机器人的机动性能具有指导意义.

References

[1]  Yu J, Ding R, Yang Q, Tan M, Wang W, Zhang J. On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Transactions on Mechatronics, 2012, 17(5): 847-856
[2]  Park Y J, Jeong U, Lee J, Kwon S P, Kim H Y, Cho K J. Kinematic condition for maximizing the thrust of a robotic fish using a compliant caudal fin. IEEE Transactions on Robotics, 2012, 28(6): 1216-1227
[3]  Westneat M W, Hale M E, Mchenry M J, Long J H. Mechanics of the fast-start: muscle function and the role of intramuscular pressure in the escape behavior of Amia calva and Polypterus palmas. Journal of Experimental Biology, 1998, 201(Pt 22): 3041-3055
[4]  Weiss S A, Zottoli S J, Do S C, Faber D S, Preuss T. Correlation of C-start behaviors with neural activity recorded from the hindbrain in free-swimming goldfish (Carassius auratus). Journal of Experimental Biology, 2006, 209(23): 4788-4801
[5]  Jayne B C, Lauder G V. New data on axial locomotion in fishes: how speed affects diversity of kinematics and motor patterns. American Zoologist, 1996, 36(6): 642-655
[6]  David G H, Blake R W. Prey capture and the fast-start performance of northern pike Esox lucius. Journal of Experimental Biology, 1991, 155: 175-192
[7]  Liu J D, Hu H S. Biological inspiration: from carangiform fish to multi-joint robotic fish. Journal of Bionic Engineering, 2010, 7(1): 35-48
[8]  Conte J, Modarres-Sadeghi Y, Watts M N, Hover F S, Triantafyllou M S. A fast-starting mechanical fish that accelerates at 40ms-2. Bioinspiration and Biomimetics, 2010, 5(3): 035004-1-035004-9
[9]  Schriefer J E, Hale M E. Strikes and startles of northern pike (Esox lucius): a comparison of muscle activity and kinematics between S-start behaviors. Journal of Experimental Biology, 2004, 207(3): 535-544
[10]  Ijspeert A J. Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 2008, 21(4): 642-653
[11]  Aoi S, Egi Y, Sugimoto R, Yamashita T, Fujiki S, Tsuchiya K. Functional roles of phase resetting in the gait transition of a biped robot from quadrupedal to bipedal locomotion. IEEE Transactions on Robotics, 2012, 28(6): 1244-1259
[12]  Wang G, Zhang D B, Lin L X, Xie H B, Hu T J, Shen L C. CPGs control method using a new oscillator in robotic fish. Science China Technological Sciences, 2010, 53(11): 2914-2919
[13]  Liang J H, Wang T M, Wen L. Development of a two-joint robotic fish for real-world exploration. Journal of Field Robotics, 2011, 28(1): 70-79
[14]  Domenici P, Blake R W. The kinematics and performance of fish fast-start swimming. Journal of Experimental Biology, 1997, 200: 1165-1178
[15]  Hale M E. S-and C-start escape responses of the muskellunge (Esox masquinongy) require alternative neuromotor mechanisms. Journal of Experimental Biology, 2002, 205(Pt 14): 2005-2016
[16]  Canfield J G. Some voluntary C-bends may be Mauthner neuron initiated. Journal of Comparative Physiology A, 2007, 193(10): 1055-1064
[17]  Liu Y C, Bailey I, Hale M E. Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio). Journal of Comparative Physiology A, 2012, 198(1): 11-24
[18]  Liu J D, Hu H S. Mimicry of sharp turning behaviours in a robotic fish. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005. 3318-3323
[19]  Yu J Z, Liu L Z, Wang L, Tan M, Xu D. Turning control of a multilink biomimetic robotic fish. IEEE Transactions on Robotics, 2008, 24(1): 201-206
[20]  Chen Hong. Kinematic Mechanism Research on the Swimming and Maneuvering of Robot Fish. [Ph.D. dissertation], University of Science and Technology of China, China, 2006(陈宏. 仿生机器鱼巡游和机动的运动机理研究 [博士学位论文], 中国科学技术大学, 中国, 2006)
[21]  Marder E, Bucher D. Central pattern generators and the control of rhythmic movements. Current Biology, 2001, 11(23): R986-R996
[22]  Ajallooeian M, Ahmadabadi M N, Araabi B N, Moradi H. Design, implementation and analysis of an alternation-based central pattern generator for multidimensional trajectory generation. Robotics and Autonomous Systems, 2012, 60(2): 182-198
[23]  Yu J Z, Wang M, Su Z S, Tan M, Zhang J W. Dynamic modeling of a CPG-governed multijoint robotic fish. Advanced Robotics, 2013, 27(4): 275-285

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133