全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器视觉的矿物浮选过程监控技术研究进展

DOI: 10.3724/SP.J.1004.2013.01879, PP. 1879-1888

Keywords: 机器视觉,泡沫浮选,在线检测,特征选择,工况识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

?矿物浮选流程长、分布范围广、控制变量多、关键工艺参数无法在线检测,导致实时监控困难,严重制约了浮选生产的优化运行及选矿自动化水平的提升.浮选泡沫表面视觉特征是浮选工况和工艺指标的直接指示器,为此将机器视觉应用到矿物浮选过程的监控中,以提高浮选过程的资源回收率.本文结合矿物浮选泡沫图像特点,从浮选过程的泡沫图像关键特征提取及表征、关键工艺参数检测、工况识别以及基于机器视觉监控系统的实现等方面综述了浮选过程监控技术的研究成果,并指出了基于机器视觉的选矿过程监控技术的发展趋势及面临的挑战.

References

[1]  Sun Cheng-Lin, Lian Qing-Ming, Wang Qing-Fa, Lu Da-Bin. Attention must be paid to the development of the mineral resources of our country. Mental Mine, 2008, (Suppl.): 85-90 (孙成林, 连钦明, 王清发, 卢达斌. 切实关注我国矿产资源开发. 金属矿山, 2008, (增刊): 85-90)
[2]  Bergh L G, Yianatos J B. The long way toward multivariate predictive control of flotation processes. Journal of Process Control, 2011, 21(2): 226-234
[3]  Liu J J, MacGregor J F. Froth-based modeling and control of flotation processes. Minerals Engineering, 2008, 21(9): 642-651
[4]  Wang W X, Stephansson O, Wang S C. On-line system setup in a cellar of a flotation plant. In: Proceedings of the 15th International Conference on Pattern Recognition. Barcelona: IEEE, 2000. 791-794
[5]  Cipriano A, Guarini M, Vidal R, Soto A, Sepúlveda C, Mery D. A real time visual sensor for supervision of flotation cells. Minerals Engineering, 1998, 11(6): 489-499
[6]  Zeng Rong. Study of edge detection methods on Flotation froth image. Journal of China University of Mining & Technology, 2002, 31(5): 421-425 (曾荣. 浮选泡沫图象边缘检测方法的研究. 中国矿业大学学报, 2002, 31(5): 421-425)
[7]  Shean B J, Cilliers J J. A review of froth flotation control. International Journal of Mineral Processing, 2011, 100(3-4): 57-71
[8]  Oestreieh J M, Tolley W K, Rice D A. The development of a color sensor system to measure mineral compositions. Minerals Engineering, 1995, 8(1-2): 31-39
[9]  Ventura-Medina E, Barbian N, Cilliers J J. Solids loading and grade on mineral froth bubble lamellae. International Journal of Mineral Processing, 2004, 74(1-4): 189-200
[10]  Kaartinen J, H?t?nen J, Hy?tyniemi H, Miettunen J. Machine vision based control, of zinc flotation——a case study. Control Engineering Practice, 2006, 14(12): 1455-1466
[11]  Nú?ez F, Cipriano A. Visual information model based predictor for froth speed control in flotation process. Minerals Engineering, 2009, 22(4): 366-371
[12]  Liu J J, Macgregor J F, Duchesene C, Bartolacci G. Flotation froth monitoring using multiresolutional multivariate image analysis. Minerals Engineering, 2005, 18(1): 65-76
[13]  Zeng Rong, Wo Guo-Jing. Application of image processing in flotation process. Nonferrous Metals, 2001, 53(4): 70-72(曾荣, 沃国经. 图像处理技术在浮选过程中的应用. 有色金属, 2001, 53(4): 70-72)
[14]  Yang C H, Xu C H, Gui W H, Zhou K J. Application of highlight removal and multivariate image analysis to color measurement of flotation bubble images. International Journal of Imaging Systems and Technology, 2009, 19(4): 316-322
[15]  Botha C P, Weber D M, van Olst M, Moolman D W. A practical system for real-time on-plant flotation froth visual parameter extraction. In: Proceedings of the 5th IEEE Africon Conference in Africa. Cape Town: IEEE, 1999. 103-106
[16]  Wang Lu-Ya, Tang Wen-Sheng, Liu Xiang-Bin, Xiang Jian-Chi, Yang Bo. A segmentation algorithm in bubble image in floatation. Journal of Natural Science of Hunan Normal University, 2002, 25(2): 23-26 (王麓雅, 唐文胜, 刘相滨, 向坚持, 阳波. 浮选中泡沫图像的分割算法. 湖南师范大学自然科学学报, 2002, 25(2): 23-26)
[17]  Zhou Kai-Jun, Wang Yi-Jun, Xu Can-Hui. Froth morphological feature extraction based on improved FCM and mathematic morphology segmentation. Journal of Central South University (Science and Technology), 2010, 41(3): 994-1000(周开军, 王一军, 许灿辉. 基于改进FCM和形态学的浮选泡沫形态特征提取. 中南大学学报 (自然科学版), 2010, 41(3): 994-1000)
[18]  Yang C H, Xu C H, Mu X M, Zhou K J. Bubble size estimation using interfacial morphological information for mineral flotation process monitoring. Transactions of Nonferrous Metals Society of China, 2009, 19(3): 694-699
[19]  Bharati M H, Liu J J, MacGregor J F. Image texture analysis: methods and comparisons. Chemometrics and Intelligent Laboratory Systems, 2004, 72(1): 57-71
[20]  Zhu J, Wang Y K. Application of image recognition system in flotation process. In: Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China: IEEE, 2008. 655-659
[21]  Sun Yuan-Yuan. Research on Texture Analysis Method about the Bauxite Cleaning Froth based on Image Sequence [Master dissertation], Central South University, China, 2011 (孙圆圆. 基于图像序列的铝土矿精选泡沫纹理分析方法研究 [硕士学位论文], 中南大学, 中国, 2011)
[22]  Liu Jin-Ping, Gui Wei-Hua, Mu Xue-Min, Tang Zhao-Hui, Li Jian-Qi. Flotation froth image texture feature extraction based on Gabor wavelets. Chinese Journal of Scientific Instrument, 2010, 31(8): 1769-1775 (刘金平, 桂卫华, 牟学民, 唐朝晖, 李建奇. 基于Gabor小波的浮选泡沫图像纹理特征提取. 仪器仪表学报, 2010, 31(8): 1769-1775)
[23]  Neethling S J. Simple approximations for estimating froth recovery. International Journal of Mineral Processing, 2008, 89(1-4): 44-52
[24]  Brown N, Bourke P, Ronkainen S, van Olst M. Improving flotation plant performance at Cadia by controlling and optimizing the rate of froth recovery using Outokumpu FrothMasterm TM. In: Proceedings of the 33rd Annual Meeting of the Canadian Mineral Processors. Ottawa, Canada: CIM, 2001. 25-36
[25]  Xu Can-Hui. Bubble Velocity Measurement for Mineral Flotation Estimation for Mineral Flotation Process [Ph.D. dissertation], Central South University, China, 2012 (许灿辉. 矿物浮选气泡速度和尺寸分布特征提取方法与应用 [博士学位论文], 中南大学, 中国, 2012)
[26]  Yang Chun-Hua, Zhou Kai-Jun, Mou Xue-Min, Gui Wei-Hua. Froth color and size measurement method for flotation based on computer vision. Chinese Journal of Scientific Instrument, 2009, 30(4): 717-721 (阳春华, 周开军, 牟学民, 桂卫华. 基于计算机视觉的浮选泡沫颜色及尺寸测量方法. 仪器仪表学报, 2009, 30(4): 717-721)
[27]  Hargrave J M, Hall S T. Diagnosis of concentrate grade and mass flow rate in tin flotation from colour and surface texture analysis. Minerals Engineering, 1997, 10(6): 613-621
[28]  Singh V, Rao S M. Application of image processing and radial basis neural network techniques for ore sorting and ore classification. Minerals Engineering, 2005, 18(5): 1412-1420
[29]  Hao Yuan-Hong, Han Jing, Qi Chun. A new recognition method for flotation froth images. Journal of Xi'an Jiaotong University, 2011, 45(4): 104-108 (郝元宏, 韩静, 齐春. 一种新的浮选泡沫图像识别方法. 西安交通大学学报, 2011, 45(4): 104-108)
[30]  National Development and Reform Commission, Ministry of Science and Technology, Ministry of industry and information technology, Ministry of Land and Resources, Ministry of Housing and Urban-Rural Development, Chinese Ministry of Commerce, Outlines of Chinese Sources Comprehensive Utilization Policy, 2010(国家发展和改革委员会, 科学技术部, 工业和信息化部, 国土资源部, 城乡建设部, 商务部. 中国资源综合利用技术政策大纲, 2010)
[31]  Reddick J F, Hesketh A H, Morar S H, Bradshaw D J. An evaluation of factors affecting the robustness of colour measurement and its potential to predict the grade of flotation concentrate. Minerals Engineering, 2009, 22(1): 64-69
[32]  Bonifazi G, Giancontieri V, Meloni A, Serranti S, Volpe F, Zuco R. Characterization of the flotation froth structure and color by machine vision (ChaCo). In: Proceedings of the 2000 International Mineral Processing Congress, 2000, 13: 39-49
[33]  Marais C, Aldrich C. Estimation of platinum flotation grades from froth image data. Mineral Engineering, 2011, 24(5): 433-441
[34]  Wang Yong, Yang Gong-Xun, Lu Mai-Xi, Gao Shu-Hua. The gray run length and its statistical texture features of coal flotation froth image. Journal of China Coal Society, 2006, 31(1): 94-98 (王勇, 杨公训, 路迈西, 高淑华. 煤泥浮选泡沫图像灰度行程及其统计纹理特征. 煤炭学报, 2006, 31(1): 94-98)
[35]  Gui Wei-Hua, Yang Chun-Hua, Xie Yong-Fang, Tang Zhao-Hui. Mineral Flotation Froth Image Processing and Process Monitoring Technique. Beijing: Science Press, 2013 (桂卫华, 阳春华, 谢永芳, 唐朝晖. 矿物浮选泡沫图像处理及过程监测技术. 北京: 科学出版社, 2013)
[36]  Moolman D W, Aldrieh C, Van Deventer J S J, Stange W W. Digital image processing as a tool for on-line monitoring of froth in flotation plants. Minerals Engineering, 1994, 7(9): 1149-1164
[37]  Bonifazi G, Serranti S, Volpe F, Zuco R. Characterisation of flotation froth colour and structure by machine vision. Computers & Geosciences, 2001, 27(9): 1111-1117
[38]  Chuk O D, Ciribeni V, Gutierrez L V. Froth collapse in column flotation: a prevention method using froth density estimation and fuzzy expert systems. Minerals Engineering, 2005, 18(5): 495-504
[39]  Bonifazi G, Gianeontieri V, Serranti S, Volpe F. A full color digital imaging based approach to characterize flotation froth: an experience in Pyhasalmi (SF) and Garpenberg (S) plants. In: Proceedings of the 2005 International Conference on Imaging: Technology and Applications for the 21st Century. Beijing, China: Science Press, 2005. 172-173
[40]  Bartolacci G, Pelletier P Jr, Tessier J Jr, Duchesne C, Bossé P A, Fournierc J. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes-Part I: Flotation control based on froth textural characteristics. Minerals Engineering, 2006, 19(6-8): 734-747
[41]  Chen Zi-Ming, Ru Qing. Preliminary exploration on using multi-media in flotation froth study. Mining and Metallurgical Engineering, 1997, 17(3): 247-248(陈子鸣, 茹青. 使用多媒体技术研究浮选泡沫现象的初步探索. 矿冶工程, 1997, 17(3): 247-248)
[42]  Yang Chun-Hua, Yang Jin-Ying, Mou Xue-Min, Zhou Kai-Jun, Gui Wei-Hua. A segmentation method based on clustering pre-segmentation and high-low scale distance reconstruction for colour froth image. Journal of Electronics and Information Technology, 2008, 30(6): 1286-1290 (阳春华, 杨尽英, 牟学民, 周开军, 桂卫华. 基于聚类预分割和高低精度距离重构的彩色浮选泡沫图像分割. 电子与信息学报, 2008, 30(6): 1286-1290)
[43]  Sadr-Kazemi N, Cilliers J J. An image processing algorithm for measurement of flotation froth bubble size and shape distributions. Minerals Engineering, 1997, 10(10): 1075-1083
[44]  Wang W, Bergholm F, Yang B. Froth delineation based on image classification. Minerals Engineering, 2003, 16(11): 1183-1192
[45]  Zhou K J, Yang C H, Gui W H, Xu C H. Clustering-driven watershed adaptive segmentation of bubble image. Journal of Central South University of Technology, 2010, 17(5): 1049-1057
[46]  Guo Jian-Ping. A Image Segmentation Method of Copper Flotation Froth Based on Vector Morphology Reconstruction [Master dissertation], Central South University, China, 2012 (郭健平. 基于向量形态学重构的铜浮选泡沫图像分割方法研究及应用 [硕士学位论文], 中南大学, 中国, 2012)
[47]  Holtham P N, Nguyen K K. On-line analysis of froth surface in coal and mineral flotation using JKFrothCam. International Journal of Mineral Processing, 2002, 64(2-3): 163-180
[48]  Nunez F, Cipriano A. Hybrid modeling of froth flotation superficial appearance applying dynamic textures analysis. In: Proceeding of the 27th Chinese Control Conference. Kunming, China: IEEE, 2008. 117-121
[49]  Chen Cui-Lan. Research on Texture Analysis Method about the Mineral Cleaning Froth Image [Master dissertation], Central South University, China, 2009(陈翠兰. 矿物浮选精选泡沫图像纹理分析方法研究 [硕士学位论文], 中南大学, 中国, 2009)
[50]  Cheng Cui-Lan, Yang Chun-Hua, Zhou Kai-Jun, Xu Can-Hui. Flotation froth image texture extraction method based on fuzzy texture spectrum. Mineral Engineering Research, 2010, 24(4): 62-66 (程翠兰, 阳春华, 周开军, 许灿辉. 基于模糊纹理谱的浮选泡沫图像纹理特征提取. 矿业工程研究, 2010, 24(4): 62-66)
[51]  Ventura-Medina E, Cilliers J J. Calculation of the specific surface area in flotation. Minerals Engineering, 2000, 13(3): 265-275
[52]  Kaartinen J, Koivo H. Machine vision based measurement and control of zinc flotation circuit. Studies in Informatics and Control, 2002, 11(1): 97-105
[53]  Tang Zhao-Hui, Liu Jin-Ping, Gui Wei-Hua, Yang Chun-Hua. Froth bubbles speed characteristic extraction and analysis based on digital image processing. Journal of Central South University Science and Technology, 2009, 40(6): 1616-1622 (唐朝晖, 刘金平, 桂卫华, 阳春华. 基于数字图像处理的浮选泡沫速度特征提取及分析. 中南大学学报 (自然科学版), 2009, 40(6): 1616-1622)
[54]  Valdivieso A L, López A A S, Escamilla C O, Fuerstenau M C. Flotation and depression control of arsenopyrite through pH and pulp redox potential using xanthate as the collector. International Journal of Mineral Processing, 2006, 81(1): 27-34
[55]  Aldrich C, Marais C, Shean B J, Cilliers J J. Online monitoring and control of froth flotation systems with machine vision: a review. International Journal of Mineral Processing, 2010, 96(1-4): 1-13
[56]  Moolman D W, Adrich C, Schmitz G P J, Van Deventer J S J. The interrelationship between surface froth characteristics and industrial flotation performance. Minerals Engineering, 1996, 9(8): 837-854
[57]  Liu Wen-Li, Lu Mai-Xi, Wang Fan, Wang Yong. Extraction of textural feature and recognition of coal flotation froth. Journal of Chemical Industry and Engineering, 2003, 54(6): 830-835 (刘文礼, 路迈西, 王凡, 王勇. 煤泥浮选泡沫图像纹理特征的提取及泡沫状态的识别. 化工学报, 2003, 54(6): 830-835)
[58]  Wang Hong-Ping, Qi Chun, Li Jin-Biao, Zhang Zhong-Xin. Classification and recognition of mineral flotation froth images based on principal component analysis. Mining & Metallurgy, 2005, 14(3): 79-82(王红平, 齐春, 李金标, 张忠信. 基于主成分分析的矿物浮选泡沫图像分类与识别. 矿冶, 2005, 14(3): 79-82)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133