全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多层次MRF重标记及映射法则下的图像分割

DOI: 10.3724/SP.J.1004.2013.01581, PP. 1581-1593

Keywords: 层次Markov随机场,集成标记,层间映射推理,图像分割

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对彩色图像分割问题,研究Markov随机场(Markovrandomfields,MRF)模型内迭代条件模式(Iterativeconditionalmode,ICM)方法的标记推理策略.通过小波分解构造图像多尺度表达,针对顶层图像先验标记获取问题,改进原始谱聚类算法,通过近邻传播自动确定图像的聚类参数,运用集成学习提高算法的稳定性和准确度.对其他各尺度图像,通过分析尺度关联下的区域特征变化,结合不同尺度间的特征相似性和同一尺度内空间邻域的一致性,提出一种立体结构描述下的尺度--空间映射法则.通过定量和定性的分割实验,结果表明本文算法具有良好的准确性、鲁棒性和普适性.

References

[1]  Gao Jun, Xie Zhao. Image Understanding Theory and Method. Beijing: Science Press, 2009. 233-287(高隽, 谢昭. 图像理解理论与方法. 北京: 科学出版社, 2009. 233-287)
[2]  Wang Kun-Feng, Li Zhen-Jiang, Tang Shu-Ming. Visual traffic data collection approach based on multi-features fusion. Acta Automatica Sinica, 2011, 37(3): 322-330(王坤峰, 李镇江, 汤淑明. 基于多特征融合的视频交通数据采集方法. 自动化学报, 2011, 37(3): 322-330)
[3]  Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619
[4]  Shi J B, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905
[5]  Liu Song-Tao, Yin Fu-Liang. The basic principle and its new advances of image segmentation methods based on graph cuts. Acta Automatica Sinica, 2012, 38(6): 911-922(刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展. 自动化学报, 2012, 38(6): 911-922)
[6]  Wang L, Liu J. Texture segmentation based on MRMRF modeling. Pattern Recognition Letters, 2000, 21(2): 189-200
[7]  Cressie N, Verzelen N. Conditional-mean least-squares fitting of Gaussian Markov random fields to Gaussian fields. Computational Statistics and Data Analysis, 2008, 52(5): 2794-2807
[8]  Von Luxburg U. A tutorial on spectral clustering. Statistics and Computing 2007, 17(4): 395-416
[9]  Zhou Z H, Tang W. Clusterer ensemble. Knowledge-Based Systems, 2006, 19(1): 77-83
[10]  Kolmogorov V, Zabih R. What energy functions can be minimized via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159
[11]  Tu Z W, Zhu S C. Image segmentation by data-driven markov chain Monte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 657-673
[12]  Martin D R, Fowlkes C, Tal D, Malik J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 416-423
[13]  Gong M L, Li C. Foreground segmentation of live videos using locally competing 1SVMs. In: Proceedings of the 2011 Computer Vision and Pattern Recognition. Colorado, USA: IEEE, 2011. 2105-2112
[14]  Bu Jiang, Lao Song-Yang, Bai Liang, Liu Gang. Automatic camera calibration for broadcast soccer video using playfield model. Acta Automatica Sinica, 2012, 33(3): 321-330(卜江, 老松杨, 白亮, 刘钢. 一种基于球场模型的广播足球视频摄像机自动定标方法. 自动化学报, 2012, 38(3): 321-330)
[15]  Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation. International Journal of Computer Vision, 2004, 59(2): 167-181
[16]  Stuart G, Donald G. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741
[17]  Li Q S, Liu G Y. Multi-resolution Markov random field model with variable potentials in wavelet domain for texture image segmentation. In: Proceedings of the 2010 International Conference on Computer Application and System Modeling. Taiyuan, China: IEEE, 2010, 9: 342-346
[18]  Gigandet X, Cuadra M B, Pointet A, Cammoun L, Caloz R, Thiran J. Region-based satellite image classification: method and validation. In: Proceedings of the 2005 IEEE International Conference on Image Processing. Antalya, Turkey: IEEE, 2005, 3: 832-835
[19]  Besag J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, 1986, 48(3): 259-302
[20]  Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976
[21]  Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239
[22]  Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137
[23]  Jung M, Yun E J, Kim C S. Multiresolution approach for texture segmentation using MRF models. In: Proceedings of the 2005 IEEE Geoscience and Remote Sensing Symposium. Seoul, Korea: IEEE, 2005. 3971-3974
[24]  Cho M, MuLee M K. Authority-shift clustering: hierarchical clustering by authority seeking on graphs. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 3193-3200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133