全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于稳健联合分块对角化的卷积盲分离

DOI: 10.3724/SP.J.1004.2013.01502, PP. 1502-1510

Keywords: 卷积盲分离,联合分块对角化,稳健迭代,矩阵范数

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对卷积盲分离问题,提出一种新的矩阵联合分块对角化(Jointblockdiagonalization,JBD)算法.现有的迭代非正交联合分块对角化算法都存在不收敛的情况,本文利用分离矩阵的特殊结构确保其可逆性,使得算法的迭代过程稳定.在已知矩阵分块结构的条件下,首先,将卷积盲分离模型写成瞬时形式,并说明其满足联合分块对角化结构;然后,提出联合分块对角化的代价函数,依据代价函数的最小化等价于矩阵中每个分块的范数最小化,将整个分离矩阵的迭代更新转化成每个分块的迭代更新;最后,利用最小化条件得到迭代算法.实数和复数两种情况下的算法都进行了推导.基本实验验证了新算法在不同条件下的性能;仿真实验中对在时域和频域都重叠的信号的卷积混合进行盲分离,实验结果验证了新算法具有更好的分离性能和更稳定的分离能力.

References

[1]  Castella M, Bianchi P, Chevereuil A, Prequet J C. A blind source separation framework for detecting CPM sources mixed by a convolutive MIMO filter. Signal Processing, 2006, 86(8): 1950-1967
[2]  Abed-Meraim K, Belouchrani A. Algorithms for joint block diagonalization. In: Proceedings of the 12th European Signal Processing Conference. Vienna, Austria: IEEE, 2004. 209-212
[3]  Ghennioui H, Fadaili E M, Thirion-Moreau N, Adib A, Moreau E. A nonunitary joint block diagonalization algorithm for blind separation of convolutive mixtures of sources. IEEE Signal Processing Letters, 2007, 14(11): 860-863
[4]  Xu X F, Feng D Z, Zheng W X, Zhang H. Convolutive blind source separation based on joint block Toeplitzation and block-inner diagonalization. Signal Processing, 2010, 90(1): 119-133
[5]  Tichavsky P, Yeredor A, Koldovsky Z. On computation of approximate joint block-diagonalization using ordinary AJD. In: Proceedings of the 10th International Conference on Latent Variable Analysis and Signal Separation. Telaviv, Israel: Springer, 2012. 163-171
[6]  Ziehe A, Lascov P, Nolte G, Müller K R. A fast algorithm for joint diagonalization with nonorthogonal transformation and its application to blind source separation. Journal of Machine Learning Research, 2004, 5: 777-800
[7]  Theis F J. Uniqueness of complex and multidimensional independent component analysis. Signal Processing, 2004, 84(5): 951-956
[8]  Yang Zhu-Qing, Li Yong, Hu De-Wen. Independent component analysis: a survey. Acta Automation Sinica, 2002, 28(5): 762-772(杨竹青, 李勇, 胡德文. 独立成分分析方法综述. 自动化学报, 2002, 28(5): 762-772)
[9]  He Z S, Xie S L, Ding S X, Cichocki A. Convolutive blind source separation in the frequency domain based on sparse representation. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(5): 1551-1563
[10]  Maehara T, Murota K. Algorithm for error-controlled simultaneous block-diagonalization of matrices. SIAM Journal on Matrix Analysis and Applications, 2011, 32(2): 605-620
[11]  Ghennioui H, Thirion-Moreau N, Moreau E, Aboutajdine D. Gradient-based joint block diagonalization algorithms: application to blind separation of fir convolutive mixtures. Signal Processing, 2010, 90(6): 1836-1849
[12]  Nion D. A tensor framework for nonunitary joint block diagonalization. IEEE Transactions on Signal Processing, 2011, 59(10): 4585-4594
[13]  Lahat D, Cardoso J F, Messer H. Joint block diagonalization algorithms for optimal separation of multidimensional components. In: Proceedings of the 10th International Conference on Latent Variable Analysis and Signal Separation. Telaviv, Israel: Springer, 2012. 155-162
[14]  Zhang Xian-Da. Matrix Analysis and Applications. Beijing: Tsinghua University Press, 2004. 100-118(张贤达. 矩阵分析与应用. 北京: 清华大学出版社, 2004. 100-118)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133