全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种改进的马氏距离相对变换主元分析方法及其故障检测应用

DOI: 10.3724/SP.J.1004.2013.01533, PP. 1533-1542

Keywords: 马氏距离相对变换主元分析,改进SPE,故障检测,单故障,多故障,活套故障

Full-Text   Cite this paper   Add to My Lib

Abstract:

?目前,主元分析方法(PCA)在数据处理、模式识别、过程监测等领域得到了越来越广泛的应用,但仍存在部分关键问题亟待解决.本文为了提高PCA方法的故障检测性能,进行了一系列的改进,首先,本文引入相对变换的概念,使用马氏距离相对变换直接消除量纲,通过理论推导证明了马氏距离相对变换可以对数据不进行标准化直接进行数据变换,而且给出了在相对空间内数据进行PCA变换的合理解释,表明了基于马氏距离相对变换的PCA故障检测方法可以有效的消除变量量纲对数据的影响,提高数据的可分性.其次,改进了SPE监控指标,提出一种基于马氏距离的平方预测误差指标,更有效地实现对工业过程的故障检测.最后,将两种改进方法相结合,提出改进的马氏距离相对变换PCA故障检测方法,并以轧钢过程活套系统为背景,实际数据仿真结果表明:与PCA以及其它改进方法相比,本文提出的方法具有更好的故障检测性能和实时性,能准确、有效地检测出活套故障.

References

[1]  Shi Huai-Tao, Liu Jian-Chang, Ding Xiao-Di, Tan Shuai, Wang Xue-Mei. Fault detection based on hybrid dynamic principal component analysis. Control Engineering of China, 2012, 19(1): 148-151 (in Chinese)
[2]  Wu Feng, Zhong Yan, Wu Quan-Yuan. Online classification framework for data stream based on incremental kernel principal component analysis. Acta Automatica Sinica, 2010, 36(4): 534-542 (in Chinese)
[3]  Zhang Y W, Zhou H, Qin S J. Decentralized fault diagnosis of large-scale processes using multiblock kernel principal component analysis. Acta Automatica Sinica, 2010, 36(4): 593-597
[4]  Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems. Berlin: Springer, 2001
[5]  Dunia R, Qin S J, Edgar T F, McAvoy T J. Identification of faulty sensors using principal component analysis. American Institute of Chemical Engineers Journal, 1996, 42(10): 2797-2812
[6]  Wen G H, Jiang L J, Wen J. Local relative transformation with application to isometric embedding. Pattern Recognition Letters, 2009, 30(3): 203-211
[7]  Tamura M, Tsujita S. A study on the number of principal components and sensitivity of fault detection using PCA. Computers and Chemical Engineering, 2007, 31(9): 1035-1046
[8]  Shi H T, Liu J C, Zhang Y, Li L. Fault detection method based on relative-transformation partial least squares. Chinese Journal of Scientific Instrument, 2012, 33(4): 816-822
[9]  Yue Yu-Mei, Ma Ya-Li, Wang Jiao-Qing. Research about fault intelligent diagnosis of high speed rotating machinery. Journal of Shenyang Jianzhu University (Natural Science), 2005, 21(6): 770-773 (in Chinese)
[10]  Garcia-Alvarez D, Fuente M J, Sainz G I. Fault detection and isolation in transient states using principal component analysis. Journal of Process Control, 2012, 22(3): 551-563
[11]  Wen Cheng-Lin, Hu Yu-Cheng. Fault diagnosis based on information incremental matrix. Acta Automatica Sinica, 2012, 38(5): 832-840 (in Chinese)
[12]  Dobos L, Abonyi J. On-line detection of homogeneous operation ranges by dynamic principal component analysis based time-series segmentation. Chemical Engineering Science, 2012, 75: 96-105
[13]  Luan Fang-Jun, Guo Hong-Mei, Lin Lan, Wang Yong-Hui. Algorithm of face authentication based on wavelet transform and combining two different 2-dimensional participial component analyses. Journal of Shenyang Jianzhu University (Natural Science), 2010, 26(5): 1001-1005 (in Chinese)
[14]  Wen Cheng-Lin, Hu Jing, Wang Tian-Zhen, Chen Zhi-Guo. Relative PCA with applications of data compression and fault diagnosis. Acta Automatica Sinica, 2008, 34(9): 1128-1139 (in Chinese)
[15]  Zhao Zhong-Gai, Liu Fei. Application research of statistical monitoring index based on Mahalanobis distance. Acta Automatica Sinica, 2008, 34(4): 493-495 (in Chinese)
[16]  Li Yuan, Tang Xiao-Chu. Improved performance of fault detection based on selection of the optimal number of principal components. Acta Automatica Sinica, 2009, 35(2): 1550-1557 (in Chinese)
[17]  Banerjee A, Burlina P. Efficient particle filtering via sparse kernel density estimation. IEEE Transactions on Image Processing, 2010, 19(9): 2480-2490
[18]  Marcu T, K?ppen-Seliger B, Stücher R. Design of fault detection for a hydraulic looper using dynamic neural networks. Control Engineering Practice, 2008, 16(2): 192-213

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133