全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于解剖学特征的乳腺X线图像胸肌分割

DOI: 10.3724/SP.J.1004.2013.01265, PP. 1265-1272

Keywords: 图像分割,乳腺X线图像,胸肌,区域聚合,谱聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

?提出了基于解剖学特征(纹理特征和形状特征)的乳腺X线图像胸肌区域分割方法.融合边缘信息到谱聚类算法得到过分割图像.根据区域的亮度分布和胸肌的三角形状特征,提出区域聚合算法,从过分割图像中识别出胸肌边缘.该方法在322幅mini-MIAS(Mammographicimageanalysissociety)乳腺图像和50幅北京大学人民医院乳腺中心乳腺图像上进行验证,实验结果表明,该方法对不同大小、形状和亮度的胸肌分割具有较强的鲁棒性.

References

[1]  WHO Media Centre. WHO cancer fact sheets[Online], available: http://www.who.int/mediacentre/factsheets/fs297/en/index.html, February 1, 2012
[2]  Camilus K S, Govindan V K, Sathidevi P S. Computer-aided identification of the pectoral muscle in digitized mammograms. Journal of Digital Imaging, 2010, 23(5): 562-580
[3]  Ferrari R J, Rangayyan R M, Desautels J E L, Borges R A, Frere A F. Automatic identification of the pectoral muscle in mammograms. IEEE Transactions on Medical Imaging, 2004, 23(2): 232-245
[4]  Wang L, Zhu M L, Deng L P, Yuan X. Automatic pectoral muscle boundary detection in mammograms based on Markov chain and active contour model. Journal of Zhejiang University: Science C, 2010, 11(2): 111-118
[5]  Suckling J. Mammographic image analysis society mini mammographic database[Online], available: http://peipa. essex.ac.uk/ipa/pix/mias/, January 19, 1999
[6]  Liu Song-Tao, Yin Fu-Liang. The basic principle and its new advances of image segmentation methods based on graph cuts. Acta Automatica Sinica, 2012, 38(6): 911-922(刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展. 自动化学报, 2012, 38(6): 911-922)
[7]  Tung F, Wong A, Clausi D A. Enabling scalable spectral clustering for image segmentation. Pattern Recognition, 2010, 43(12): 4069-4076
[8]  Arbeláez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916
[9]  Kwok S M, Chandrasekhar R, Attikiouzel Y, Rickard M T. Automatic pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE Transactions on Medical Imaging, 2004, 23(9): 1129-1140
[10]  Ferrari R J, Rangayyan R M, Desautels J E L, Frere A F. Segmentation of mammograms: identification of the skin-air boundary, pectoral muscle, and fibro-glandular disc. In: Proceedings of the 5th International Workshop Digital Mammography. Toronto, Canada: American Roentgen Ray Society, 2001. 573-579
[11]  Ma F, Bajger M, Slavotinek J P, Bottema M J. Two graph theory based methods for identifying the pectoral muscle in mammograms. Pattern Recognition, 2007, 40(9): 2592-2602
[12]  Camilus K S, Govindan V K, Sathidevi P S. Pectoral muscle identification in mammograms. Journal of Applied Clinical Medical Physics, 2011, 12(3): 215-230
[13]  Shi J B, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905
[14]  Fowlkes C, Belongie S, Chung F, Malik J. Spectral grouping using the Nystrom method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225
[15]  Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577
[16]  Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133