全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于两级字典与分频带字典的图像超分辨率算法

DOI: 10.3724/SP.J.1004.2013.01310, PP. 1310-1320

Keywords: 超分辨率,稀疏表示,字典,非局部相似性

Full-Text   Cite this paper   Add to My Lib

Abstract:

?常规基于稀疏表示的超分辨率算法使用一级高低分辨字典重构图像,恢复细节信息不充分.本文利用两级字典恢复尽可能多的细节信息;然后构造联合低频字典、中频字典、高频字典的分频带字典,利用图像低频、中频、高频三者之间的预测关系,恢复图像中的高频信息.利用图像的非局部相似性,将其与迭代反向投影算法相结合,进行图像的后处理.实验结果表明,与其他几种基于学习的算法相比,本算法无论是在峰值信噪比、结构相似性指标,还是视觉效果上都有显著的提高.

References

[1]  Milanfar P. Super-Resolution Imaging. USA: CRC Press, 2010
[2]  Li X, Orchard M T. New edge-directed interpolation. IEEE Transactions on Image Processing, 2001, 10(10): 1521-1527
[3]  Sun J, Xu Z B, Shum H Y. Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Transactions on Image Processing, 2011, 20(6): 1529-1542
[4]  Freeman W T, Pasztor E C, Carmichael O T. Learning low-level vision. International Journal of Computer Vision, 2000, 40(1): 25-47
[5]  Sun J, Zheng N N, Tao H, Shum H Y. Image hallucination with primal sketch priors. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison Wisconsin, USA: IEEE, 2003. 729-736
[6]  Yang J C, Wright J, Ma Y, Huang T. Image super-resolution as sparse representation of raw image patches. In: Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8
[7]  Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations. In: Proceedings of the 7th International Conference on Curves and Surfaces. Berlin, Heidelberg: Springer, 2012. 711-730
[8]  Yang C Y, Huang J B, Yang M H. Exploiting self-similarities for single frame super-resolution. In: Proceedings of the 10th Asian conference on Computer vision. Berlin, Heidelberg: Springer, 2011. 497-510
[9]  Dong W S, Zhang L, Shi G M, Wu X L. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857
[10]  Yu G S, Sapiro G, Mallat S. Image modeling and enhancement via structured sparse model selection. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 1641-1644
[11]  Starck J L, Fadili J, Murtagh F. The undecimated wavelet decomposition and its reconstruction. IEEE Transactions on Image Processing, 2007, 16(2): 297-309
[12]  Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B, 1996, 58(1): 267-288
[13]  Garg R, Khandekar R. Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property. In: Proceedings of the 26th International Conference on Machine Learning. New York, USA: ACM, 2009. 337-344
[14]  Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine, 2003, 20(3): 21-36
[15]  Dai S Y, Han M, Wu Y, Gong Y H. Bilateral back-projection for single image super resolution. In: Proceedings of the 2007 IEEE International Conference on Multimedia and Expo. Beijing China: IEEE, 2007. 1039-1042
[16]  Dong W S, Zhang L, Shi G M, Wu X L. Nonlocal back-projection for adaptive image enlargement. In: Proceedings of the 16th IEEE International Conference on Image Processing. Cairo, Egypt: IEEE, 2009. 349-352
[17]  Freeman W T, Jones T R, Pasztor E C. Example-based super-resolution. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65
[18]  Chang H, Yeung D Y, Xiong Y M. Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE, 2004. 275-282
[19]  Yang J C, Wright J, Huang T, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873
[20]  Glasner D, Bagon S, Irani M. Super-resolution from a single image. In: Proceedings of IEEE 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 349-356
[21]  Dong W S, Shi G M, Zhang L, Wu X L. Super-resolution with nonlocal regularized sparse representation. In: Proceedings of the 2010 SPIE Conference on Visual Communications and Image Processing. Huangshan, China: IEEE, 2010. 1-10
[22]  Lee H, Battle A, Raina R, Ng A Y. Efficient sparse coding algorithms. In: Proceedings of the 2007 Neural Information Processing Systems. Vancouver, Canada: Citeseer, 2007. 801-808
[23]  Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322
[24]  Irani M, Peleg S. Motion analysis for image enhancement: resolution, occlusion, and transparency. Journal of Visual Communication and Image Representation, 1993, 4(4): 324-335
[25]  Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. The Annals of Statistics, 2004, 32(2): 407-451

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133