全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于混合采样的多模型机动目标跟踪算法

DOI: 10.3724/SP.J.1004.2013.01152, PP. 1152-1156

Keywords: 机动目标跟踪,粒子滤波,多模型方法,混合采样

Full-Text   Cite this paper   Add to My Lib

Abstract:

?提出了一种新型的基于混合采样的多模型粒子滤波算法,该算法能够有效降低多模型粒子滤波器的采样粒子数.文中证明了这种基于混合采样的粒子滤波算法是一种多模型粒子滤波算法.该算法的计算复杂度与单模型粒子滤波算法相当.仿真实验表明,与已有的多模型粒子滤波算法相比,算法的计算复杂度大幅降低.

References

[1]  Gordon N J, Salmon D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings - F, 1993, 140(2): 107-113
[2]  Tong Xiao-Min, Zhang Yan-Ning, Yang Tao. Robust object tracking based on adaptive and incremental subspace learning. Acta Automatica Sinica, 2011, 37(12): 1483-1494 (仝小敏, 张艳宁, 杨涛. 基于增量子空间自适应决策的目标跟踪, 自动化学报, 2011, 37(12): 1483-1494)
[3]  Yang Xiao-Jun, Xing Ke-Yi, Shi Kun-Lin, Pan Quan. Dynamic collaborative algorithm for maneuvering target tracking in sensor networks. Acta Automatica Sinica, 2007, 33(10): 1029-1035 (杨小军, 邢科义, 施坤林, 潘泉. 传感器网络下机动目标动态协同跟踪算法. 自动化学报, 2007, 33(10): 1029-1035)
[4]  Wan Jiu-Qing, Liang Xu, Ma Zhi-Feng. Infrared maneuvering target tracking based on IMM-PF with adaptive observation model. Acta Electronica Sinica, 2011, 39(3): 602-608 (万九卿, 梁旭, 马志峰. 基于自适应观测模型交互多模型粒子滤波的红外机动目标跟踪. 电子学报, 2011, 39(3): 602-608)
[5]  McGinnity S, Irwin G W. Multiple model bootstrap filter for maneuvering target tracking. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 1006-1012
[6]  Foo P H, Ng G W. Combining the interacting multiple model method with particle filters for manoeuvring target tracking. IET Radar, Sonar and Navigation, 2011, 5(3): 234-255
[7]  Garabedian R S, Helble J J. Modeling coalescence in multiple-particle systems. Journal of Aerosol Science, 2008, 39(1): 71-81
[8]  Hue C, Le Cadre J P, Perez P. Sequential Monte Carlo methods for multiple target tracking and data fusion. IEEE Transaction on Signal Process, 2002, 50(2): 309-325
[9]  Wang Yuan, Wen Lan, Chen Mu-Fa. Dictionary of Mathematics. Beijing: Science Press, 2010. 957-971 (王元, 文兰, 陈木法. 数学大辞典. 北京: 科学出版社, 2010. 957-971)
[10]  Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188
[11]  Wang Yu-Ru, Liu Jia-Feng, Liu Guo-Jun, Tang Xiang-Long, Liu Peng. People tracking based on multi-regions joint particle filters. Acta Automatica Sinica, 2009, 35(11): 1387-1393 (王玉茹, 刘家锋, 刘国军, 唐降龙, 刘鹏. 基于多区域联合粒子滤波的人体运动跟踪. 自动化学报, 2009, 35(11): 1387-1393)
[12]  Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation: Theory, Algorithms, and Software. New York: Wiley, 2001. 441-466
[13]  Musicki D, Suvorova S. Tracking in clutter using IMM-IPDA-based algorithms. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 111-126
[14]  Boers Y, Driessen J N. Interacting multiple model particle filter. IEE Proceedings Radar, Sonar and Navigation, 2003, 150(5): 344-349
[15]  Gao C C, Chen W. Ground moving target tracking with VS-IMM using mean shift unscented particle filter. Chinese Journal of Aeronautics, 2011, 24(5): 622-630
[16]  Hlinomaz P, Hong L. A multi-rate multiple model track-before-detect particle filter. Mathematical and Computer Modelling, 2009, 49(1-2): 146-162
[17]  Li X R, Jilkov V P. Survey of maneuvering target tracking. Part V: Multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1255-1321
[18]  Linder S P, Schell C. A non-Bayesian segmenting tracker for highly maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1168-1177

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133