Ozawa S, Roy A, Roussinov D. A multitask learning model for online pattern recognition. IEEE Transactions on Neural Networks, 2009, 20(3): 430-445
[2]
Xu Z J, Sun S L. Multi-source Transfer Learning with Multi-view Adaboost [Online], available: http://www.cst. ecnu.edu.cn/ slsun/pubs/MvTransfer.pdf, November 7-9, 2006
[3]
Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359
[4]
Zhang D, He J R, Liu Y, Si L, Lawrence R D. Multi-view transfer learning with a large margin approach. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). New York, USA: ACM, 2011. 1208-1216
[5]
Perez-Cruz F. Kullback-Leibler divergence estimation of continuous distributions. In: Proceedings of the 2008 IEEE International Symposium on Information Theory (ISIT) 2008. New York, USA: IEEE, 2008. 1666-1670
[6]
Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco, CA: Morgan Kaufmann Publishers, 1999. 200-209
[7]
Ji S W, Tang L, Yu S P, Ye J P. Extracting shared subspace for multi-label classification. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). New York, USA: ACM, 2008. 381-389
[8]
Duan L X, Tsang I W, Xu D. Domain transfer multiple kernel learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465-479
[9]
Duan L X, Xu D, Tsang I W. Domain adaptation from multiple sources: a domain-dependent regularization approach. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(3): 504-518
[10]
Tao J W, Chung F L, Wang S T. On minimum distribution discrepancy support vector machine for domain adaptation. Pattern Recognition, 2012, 45(11): 3962-3984
[11]
Zhang Z H, Zhou J. Multi-task clustering via domain adaptation. Pattern Recognition, 2012, 45(1): 465-473
[12]
Quanz B, Huan J, Mishra M. Knowledge transfer with low-quality data: a feature extraction issue. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(10): 1789-1802
[13]
Zhao D L, Lin Z C, Xiao R, Tang X O. Linear Laplacian discrimination for feature extraction. In: Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2007. 1-7
[14]
Atkeson C G, Moore A W, Schaal S. Locally weighted learning. Artificial Intelligence Review, 1997, 11(1-5): 11-73
[15]
Woods K, Kegelmeyer W P, Bowyer J. Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(4): 405-410
[16]
Bregler C, Omohundro S M. Surface learning with applications to lipreading. In: Proceedings of the 1993 Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 1993. 43-50
[17]
Deng Nai-Yang, Tian Ying-Jie. The New Method of Data-Mining — Support Vector Machine. Beijing: Science Press, 2004. 73-150 (邓乃阳, 田英杰. 数据挖掘中的新方法—支持向量机. 北京: 科学出版社, 2004. 73-150)
[18]
Wang Z, Chen S C. New least squares support vector machines based on matrix patterns. Neural Processing Letters, 2007, 26(1): 41-56
[19]
Ling X, Dai W Y, Xue G R, Yang Q, Yu Y. Spectral domain-transfer learning. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). New York, USA: ACM, 2008. 488-496
[20]
Quanz B, Huan J. Large margin transductive transfer learning. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM). New York, USA: ACM, 2009. 1327-1336
[21]
Xu Z J, Sun S L. Multi-view Transfer learning with adaboost. In: Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI). New York, USA: IEEE, 2011. 399-402
[22]
Borgwardt K M, Gretton A, Rasch M J, Kriegel H P, Sch?lkopf B, Smola A J. Integrating structured biological data by kernel maximum mean discrepancy. In: Proceedings of the 14th International Conference on Intelligent Systems for Molecular Biology (ISMB). California, USA: ISCB, 2006. e49-e57
[23]
Vapnik V N. Statistical Learning Theory. New York: Wiley, 1998. 88
[24]
Chen B, Lam W, Tsang I W, Wong T L. Extracting discriminative concepts for domain adaptation in text mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). New York, USA: ACM, 2009. 179-188
[25]
Lee J M. Riemannian Manifolds: An Introduction to Curvature. Berlin: Springer-Verlag, 2003. 1-4
[26]
Wang Y Y, Chen S C, Zhou Z H. New semi-supervised classification method based on modified cluster assumption. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(5): 689-702
[27]
Sun S L. Local within-class accuracies for weighting individual outputs in multiple classifier systems. Pattern Recognition Letters, 2010, 31(2): 119-124
[28]
Sun S L, Zhang C S. Subspace ensembles for classification. Physica A: Statistical Mechanics and its Applications, 2007, 385(1): 199-207
[29]
Zhang W, Wang X G, Zhao D L, Tang X O. Graph degree linkage: agglomerative clustering on a directed graph. In: Proceedings of the 12th European Conference on Computer Vision (ECCV). Berlin: Springer-Verlag, 2012. 428-441
[30]
Kanamori T, Hido S, Sugiyama M. A least-squares approach to direct importance estimation. Journal of Machine Learning Research, 2009, 10: 1391-1445
[31]
Gao J, Fan W, Jiang J, Han J W. Knowledge transfer via multiple model local structure mapping. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). New York, USA: ACM, 2008. 283-291
[32]
Bruzzone L, Marconcini M. Domain adaptation problems: a DASVM classification technique and a circular validation strategy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 770-787