全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

系统辨识:新的模式、挑战及机遇

DOI: 10.3724/SP.J.1004.2013.00933, PP. 933-942

Keywords: 系统辨识,不确定性,信息,复杂性,网络系统,大数据处理,辨识与决策的结合

Full-Text   Cite this paper   Add to My Lib

Abstract:

?钱学森教授曾对"系统"给出一个简明的定义:"系统是指依一定秩序相互联系的一组事物".一般说来,系统辨识可以认为是利用已知先验信息和输入-输出数据来建立系统数学模型的科学.经过半个多世纪的发展,系统辨识已成为一个定义较为明确、发展相当成熟的研究领域,在思想方法、理论基础、实际应用等诸多方面都有丰富的研究成果.进入新世纪,伴随着科学技术的突飞猛进,新学科、新研究领域不断涌现,给传统的系统辨识带来了新的挑战与机遇.因而,从这个角度说,系统辨识仍是一个年轻的、朝气蓬勃的学科.本文将讨论系统辨识在新机遇下一些具有潜力的重要方向,提出一些值得关注的热点问题,以此为楔入点,抛砖引玉,希望能引发进一步的讨论.

References

[1]  Zadeh L A. On the identification problem. IEEE Transactions on Circuits and Systems, 1956, 3(4): 277-281
[2]  Guo Lei, Cheng Dai-Zhan, Feng De-Xing. Introduction to Control Theory: from Basic Concepts to Research Frontiers, Beijing: Science Press, 2005 (郭雷,程代展, 冯德兴. 控制理论导论—从基本概念到研究前沿. 北京: 科学出版社, 2005)
[3]  Gevers M. A personal view of the development of system identification: a 30-year journey through an exciting field. IEEE Control Systems Magazine, 2006, 26(6): 93-105
[4]  Ljung L. Perspectives on system identification. In: Proceedings of the 17th IFAC World Congress. Seoul, South Korea: IFAC, 2008. 7172-7184
[5]  Ljung L. System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice-Hall, 1987
[6]  Ljung L. Analysis of recursive stochastic algorithms. IEEE Transactions on Automatic Control, 1977, 22(4): 551-575
[7]  Chen H F, Zhu Y M. Stochastic approximation procedures with randomly varying truncations. Science in China, Series A, 1986, 29(9): 914-926
[8]  Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19(6): 716 -723
[9]  Rissanen J. Modeling by shortest data description. Automatica, 1978, 14(5): 465-471
[10]  Zheng W X, Feng C B. A bias-correction method for indirect identification of closed-loop systems. Automatica, 1995, 31(7): 1019-1024
[11]  S?derstr?m T, Soverini U, Mahata K. Perspectives on errors-in-variables estimation for dynamic systems. Signal Processing, 2002, 82(8): 1139-1154
[12]  Obinata G, Brian D O A. Model Reduction for Control System Design. London: Springer, 2001
[13]  Astr?m K J, Wittenmark B. On self tuning regulators. Automatica, 1973, 9(2): 185-199
[14]  Durrett R. Probability: Theory and Examples (Cambridge Series in Statistical and Probabilistic Mathematics) (4th edition). Cambridge: Cambridge University Press, 2010
[15]  Milanese M, Belforte G. Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: linear families of models and estimators. IEEE Transactions on Automatic Control, 1982, 27(2): 408-414
[16]  M?kil? P M, Partington J R, Gustafsson T K. Worst-case control-relevant identification. Automatica, 1995, 31(12): 1799-1819
[17]  Smith R S, Dahleh M A [Editor]. The modeling of uncertainty in control systems. In: Proceedings of the 1992 Santa Barbara Workshop. Berlin, Germany: Springer-Verlag, 1994
[18]  Gu G X, Khargonekar P P. Linear and nonlinear algorithms for identification in H∞. IEEE Transactions on Automatic Control, 1992, 37(7): 953-963
[19]  Chen J, Nett C N, Fan M K H. Worst case system identification in H∞: validation of a priori information, essentially optimal algorithms, and error bounds. IEEE Transactions on Automatic Control, 1995, 40(7): 1260-1265
[20]  Zhou T, Kimura H. Time domain identification for robust control. Systems and Control Letters, 1993, 20(3): 167-178
[21]  Poolla K, Khargonekar P, Tikku A, Krause J, Nagpal K. A time-domain approach to model validation. IEEE Transactions on Automatic Control, 1994, 39(5): 951-959
[22]  Anderson T W. The Statistical Analysis of Time Series. New York: Wiley, 1971
[23]  Wang L Y. Uncertainty, information and complexity in identification and control. International Journal of Robust and Nonlinear Control, 2000, 10(11-12): 857-874
[24]  Milanese M, Vicino A. Information-based complexity and nonparametric worst-case system identification. Journal of Complexity, 1993, 9(4): 427-446
[25]  Wang L Y, Yin G G. Towards a harmonic blending of deterministic and stochastic frameworks in information processing. Robustness in Identification and Control, Lecture Notes in Control and Information Sciences Volume 245. London: Springer-Verlag, 1999. 102-116
[26]  Dahleh M A, Theodosopoulos T V, Tsitsiklis J N. The sample complexity of worst-case identification of FIR linear systems. Systems and Control Letters, 1993, 20: 157-166
[27]  Wang J D, Zheng W X, Chen T W. Identification of linear dynamic systems operating in a networked environment. Automatica, 2009, 45(12): 2763-2772
[28]  Zhang Q, Zhang J F. Distributed parameter estimation over unreliable networks with Markovian switching topologies. IEEE Transactions on Automatic Control, 2012, 57(10): 2545-2560
[29]  Liu X H, Goldsmith A. Wireless communication tradeoffs in distributed control. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, HI: IEEE, 2003. 688-694
[30]  Yuksel S, Basar T. Optimal signaling policies for decentralized multicontroller stabilizability over communication channels. IEEE Transactions on Automatic Control, 2007, 52(10): 1969-1974
[31]  Wang L Y, Yin G, Zhang J F, Zhao Y L. System Identification with Quantized Observations. Boston, MA: Birkh?user, 2010
[32]  Wang L Y, Li C Y, Yin G, Guo L, Xu C Z. State observability and observers of linear-time-invariant systems under irregular sampling and sensor limitations. IEEE Transactions on Automatic Control, 2011, 56(11): 2639-2654
[33]  He T, Lu X L, Wu X Q, Lu J A, Zheng W X. Optimization-based structure identification of dynamical networks. Physica A: Statistical Mechanics and Its Applications, 2013, 392(4): 1038-1049
[34]  Wang Y L, Zhou T. A relative variation-based method to unraveling gene regulatory networks. PLoS ONE, 2012, 7(2): e31194
[35]  Verhaegen M, Westwick D. Identifying MIMO Wiener systems using subspace model identification methods. Signal Processing, 1996, 52(2): 235-258
[36]  Bai E W, Reyland J Jr. Towards identification of Wiener systems with the least amount of a priori information on the nonlinearity. Automatica, 2008, 44(4): 910-919
[37]  Ninness B, Gibson S. Quantifying the accuracy of Hammerstein model estimation. Automatica, 2002, 38(12): 2037- 2051
[38]  Bai E W, Li K. Convergence of the iterative algorithm for a general Hammerstein system identification. Automatica, 2010, 46(11): 1891-1896
[39]  Zhao W X, Chen H F. Identification of Wiener, Hammerstein, and NARX systems as Markov chains with improved estimates for their nonlinearities. Systems and Control Letters, 2012, 61(12): 1175-1186
[40]  Roll J, Nazin A, Ljung L. Nonlinear system identification via direct weight optimization. Automatica, 2005, 41(3): 475- 490
[41]  Zhao Y L, Wang L Y, Yin G G, Zhang J F. Identification of Wiener systems with binary-valued output observations. Automatica, 2007, 43(10): 1752-1765
[42]  Tan P N, Steinbach M, Kumar V. Introduction to Data Mining. Boston, MA: Addison-Wesley, 2006
[43]  Sayeed A M. A signal modeling framework for integrated design of sensor networks. In: Proceedings of the 2003 IEEE Workshop Statistical Signal Processing. St. Louis, MO, USA: IEEE, 2003. 7
[44]  Vapnik V N. Statistical Learning Theory. New York: Wiley-Interscience, 1998
[45]  Vapnik V N. The Nature of Statistical Learning Theory (Information Science and Statistics for Engineering and Information Science) (2nd edition). New York: Springer Verlag, 1999
[46]  Vidyasagar M. Learning and Generalization: With Applications to Neural Networks (2nd edition). London: Springer, 2003
[47]  Kolmogorov A N. On some asymptotic characteristics of completely bounded spaces. Doklady Akademii Nauk SSSR, 1956, 108: 385-389 (in Russian)
[48]  Wang L Y, Yin G G, Zhang J F, Zhao Y L. Space and time complexities and sensor threshold selection in quantized identification. Automatica, 2008, 44(12): 3014-3024
[49]  Poolla K, Tikku A. On the time complexity of worst-case system identification. IEEE Transactions on Automatic Control, 1994, 39(5): 944-950
[50]  Zames G. On the metric complexity of causal linear systems: \varepsilon-entropy and \varepsilon-dimension for continuous time. IEEE Transactions on Automatic Control, 1979, 24(2): 222-230
[51]  Cramer H. Mathematical Methods of Statistics. Princeton NJ: Princeton University Press, 1946
[52]  Cover T M, Thomas J A. Elements of Information Theory. New York: Wiley-Interscience, 1991
[53]  Davis M D, Sigal R, Weyuker E J. Computability, Complexity, and Languages (2nd edition). San Diego: Academic Press, 1994
[54]  Zurek W H. Complexity, Entropy, and the Physics of Information. Reading, MA: Addison-Wesley, 1990
[55]  Ljung L. System Identification Toolbox — for Use with Matlab, User's Guide (5th edition). Natick, MA: The MathWorks, Inc. Sherborn, Mass, 2000 1-350
[56]  Ljung L. Educational aspects of identification software user interfaces. In: Proceedings of the 13th IFAC Symposium on System Identification. Rotterdam, The Netherlands: IFAC, 2003. 1590-1594
[57]  Cai Ji-Bin. System Identification. Beijing: Beijing Institute of Technology Press, 1989 (蔡季冰. 系统辨识. 北京: 北京理工大学出版社, 1989)
[58]  Ljung L, Vicino A. Guest editorial: special issue on system identification. IEEE Transactions on Automatic Control, 2005, 50(10): 1473
[59]  Ljung L, Hjalmarsson H, Ohlsson H. Four encounters with system identification. European Journal of Control, 2011, 17(5-6): 449-471
[60]  Chen H F, Guo L. Identification and Stochastic Adaptive Control. Boston, MA: Birkh?user, 1991
[61]  Chen H F. Recursive identification for Wiener model with discontinuous piece-wise linear function. IEEE Transactions on Automatic Control, 2006, 51(3): 390-400
[62]  Kushner H J, Yin G. Stochastic Approximation and Recursive Algorithms and Applications (2nd edition). New York: Springer-Verlag, 2003
[63]  Chen H F. Stochastic Approximation and Its Applications. Dordrecht, The Netherlands: Kluwer Academic, 2002
[64]  Burnham K P, Anderson D R. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research, 2004, 33(2): 261-304
[65]  Zheng W X, Feng C B. Identification of stochastic time lag systems in the presence of colored noise. Automatica, 1990, 26(4): 769-779
[66]  Soderstrom T. Accuracy analysis of the Frisch scheme for identifying errors-in-variables systems. IEEE Transactions on Automatic Control, 2007, 52(6): 985-997
[67]  Forssel U, Ljung L. Closed-loop identification revisited. Automatica, 1999, 35(7): 1215-1241
[68]  Kalman R E. Design of a self-optimising control system. Transactions on ASME, 1958, 80: 468-478
[69]  Guo L. Convergence and logarithm laws of self-tuning regulators. Automatica, 1995, 31(3): 435-450
[70]  Zhou Tong. Introduction to Control-Oriented System Identification. Beijing: Tsinghua University Press, 2004 (周彤. 面向控制的系统辨识导论. 北京: 清华大学出版社, 2004 )
[71]  Milanese M, Vicino A. Optimal estimation theory for dynamic systems with set membership uncertainty: an overview. Automatica, 1991, 27(6): 997-1009
[72]  Chen J, Gu G X. Control-Oriented System Identification: An H∞ Approach. New York: Wiley-Interscience, 2000
[73]  Helmicki A J, Jacobson C A, Nett C N. Control oriented system identification: a worst-case/deterministic approach in H∞. IEEE Transactions on Automatic Control, 1991, 36(10): 1163-1176
[74]  Gu G X, Khargonekar P P. A class of algorithms for identification in H∞. Automatica, 1992, 28(2): 299-312
[75]  Chen J, Nett C N. The Caratheodory-Fejer problem and H∞/l_1 identification: a time domain approach. IEEE Transactions on Automatic Control, 1995, 40(4): 729-735
[76]  Chen J. Frequency-domain tests for validation of linear fractional uncertain models. IEEE Transactions on Automatic Control, 1997, 42(6): 748-760
[77]  Smith R S, Doyle J C. Model validation: a connection between robust control and identification. IEEE Transactions on Automatic Control, 1992, 37(7): 942-952
[78]  Serfling R J. Approximation Theorems of Mathematical Statistics. New York: Wiley, 1980
[79]  Bohlin T. On the maximum likelihood method of identification. IBM Journal of Research and Development, 1970, 14(1): 41-51
[80]  Casini M, Garulli A, Vicino A. Time complexity and input design in worst-case identification using binary sensors. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, LA, USA: IEEE, 2007. 5528-5533
[81]  Wang L Y, Yin G G. Persistent identification of systems with unmodeled dynamics and exogenous disturbances. IEEE Transactions on Automatic Control, 2000, 45(7): 1246-1256
[82]  Chong C Y, Kumar S P. Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE, 2003, 91(8): 1247-1256
[83]  Wang L Y, Zhang J F, Yin G. System identification using binary sensors. IEEE Transactions on Automatic Control, 2003, 48(11): 1892-1907
[84]  Zhou T, Wang Y L. Causal relationship inference for a large-scale cellular network. Bioinformatics, 2010, 26(16): 2020- 2028
[85]  Bolouri H, Bower J M. Computational Modeling of Genetic and Biochemical Networks. Cambridge, Mass: MIT Press, 2001
[86]  Billings S A. Identification of nonlinear systems — a survey. IEE Proceedings D: Control Theory and Applications, 1980, 127(6): 272-285
[87]  Sj?berg J, Zhang Q H, Ljung L, Benveniste A, Delyon B, Glorennec P Y, Hjalmarsson H, Juditskys A. Nonlinear black-box modeling in system identification: a unified overview. Automatica, 1995, 31(12): 1691-1724
[88]  Bai E W. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear system. Automatica, 1998, 34(3): 333-338
[89]  Zhu Y. Estimation of an N-L-N Hammerstein-Wiener model. Automatica, 2002, 38: 1607-1614
[90]  Zhao W X, Chen H F. Adaptive tracking and recursive identification for Hammerstein systems. Automatica, 2009, 45: 2773-2783
[91]  Mu B Q, Chen H F. Recursive identification of Wiener-Hammerstein systems. SIAM Journal on Control and Optimization, 2012, 50(5): 2621-2658
[92]  Wang L Y, Yin G G. Asymptotically efficient parameter estimation using quantized output observations. Automatica, 2007, 43(7): 1178-1191
[93]  Katayama T. Subspace Methods for System Identification. London: Springer, 2005
[94]  Van Overschee P, de Moor B. A unifying theorem for three subspace system identification algorithms. Automatica, 1995, 31(12): 1853-1864
[95]  Vidal R. Recursive identification of switched ARX systems. Automatica, 2008, 44(9): 2274-2287
[96]  Wang J, Chen T. Parameter estimation of periodically switched linear systems. IET Control Theory and Applications, 2012, 6(6): 768-775
[97]  Zames G, Lin L, Wang L Y. Fast identification n-widths and uncertainty principles for LTI and slowly varying systems. IEEE Transactions on Automatic Control, 1994, 39(9): 1827-1838
[98]  Pinkus A. N-Widths in Approximation Theory. New York: Springer-Verlag, 1985
[99]  Traub J F, Wasilkowski G W, Wozniakowski H. Information-based Complexity. New York: Academic Press, 1988
[100]  Lin L, Wang L Y, Zames G. Time complexity and model complexity of fast identification of continuous-time LTI systems. IEEE Transactions on Automatic Control, 1999, 44(10): 1814-1828
[101]  Tse D C N, Dahleh M A, Tsitsiklis J N. Optimal asymptotic identification under bounded disturbances. IEEE Transactions on Automatic Control, 1993, 38(8): 1176-1190
[102]  Frieden B R. Science from Fisher Information: A Unification. Cambridge: Cambridge University Press, 2004
[103]  Hannan E J, Deistler M. The Statistical Theory of Linear Systems. New York: John Wiley and Sons, 1988
[104]  Gallager R G. Information Theory and Reliable Communication. New York: John Wiley and Sons, 1968
[105]  Gersho A, Gray R M. Vector Quantization and Signal Compression. Norwell, MA: Kluwer Academic Publishers, 1991
[106]  Sayood K. Introduction to Data Compression (2nd edition). San Francisco: Morgan Kaufmann, 2000
[107]  Gevers M. Towards a joint design of identification and control? Essays on Control: Perspectives in the Theory and Its Applications. Boston, MA: Birkh?user, 1993. 111-151
[108]  Garnier H, Gilson M, Laurain V. The CONTSID toolbox for Matlab: Extensions and latest developments. In: Proceedings of the 15th IFAC Symposium on System Identification. Saint-Malo, France, 2009. 735-740
[109]  Rivera D E, Lee H, Braun M W, Mittelmann H D. Plant-friendly system identification: a challenge for the process industries. In: Proceedings of the 13th IFAC Symposium on System Identification. Rotterdam, Netherlands: IFAC, 2003. 917-922

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133