全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于有向图的信息拓扑独立的二阶系统一致性判据

DOI: 10.3724/SP.J.1004.2013.00995, PP. 995-1002

Keywords: 一致性,有向图,协同控制,多智能体系统,时延

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对可能存在拓扑切换情形的有向图,研究了多个二阶系统在没有领航者时的一致性问题.提出了两个使用不同合作策略的一致性算法,并得到了若干与信息拓扑参数无关的一致性判据.采用基于特征值分析的方法对第一个一致性算法进行了分析,得到了该算法在固定有向图条件下一致性可达的充分必要条件.对于第二个一致性算法,如果切换网络拓扑的并图存在一棵有向生成树的频率足够高,则系统仍然可以实现一致性.利用等价模型变换将原系统转化为级联系统的方法,给出并简化了该算法的收敛性分析.采用同样的策略,针对切换无向图的一致性问题进一步推导得到了一个新颖的充分必要条件.另外,本文还分别针对固定有向图研究了这两个算法对时延的鲁棒性.论文最后给出了仿真示例,验证了所得理论结果的正确性和算法的有效性.

References

[1]  Lin Z Y, Francis B, Maggiore M. Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Transactions on Automatic Control, 2005, 50(1): 121-127
[2]  Tanner H G, Jadbabaie A, Pappas G J. Flocking in fixed and switching networks. IEEE Transactions on Automatic Control, 2007, 52(5): 863-868
[3]  Ren W. Formation keeping and attitude alignment for multiple spacecraft through local interactions. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 633-638
[4]  Reynolds C W. Flocks, herds, and schools: a distributed behavioral model. Computer Graphics (ACM), 1987, 21(4): 25-34
[5]  Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase-transition in a system of self-driven particles. Physical Review Letters, 1995, 75(6): 1226-1229
[6]  Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001
[7]  Fax J A, Murray R M. Graph laplacians and stabilization of vehicle formations. In: Proceedings of the 15th IFAC Congress. Barcelona, Spain: International Federation of Automatic Control, 2002. 283-288(请核对本条文献信息)
[8]  Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661
[9]  Ni W, Cheng D Z. Leader-following consensus of multi-agent systems under fixed and switching topologies. Systems & Control Letters, 2010, 59(3-4): 209-217
[10]  Chen F, Chen Z Q, Xiang L Y, Liu Z X, Yuan Z Z. Reaching a consensus via pinning control. Automatica, 2009, 45(5): 1215-1220
[11]  Tian Y P, Liu C L. Consensus of multi-agent systems with diverse input and communication delays. IEEE Transactions on Automatic Control, 2008, 53(9): 2122-2128
[12]  Gao Y P, Wang L. Asynchronous consensus of continuous-time multi-agent systems with intermittent measurements. International Journal of Control, 2010, 83(3): 552-562
[13]  Wen G H, Duan Z S, Li Z K, Chen G R. Consensus and its L_2-gain performance of multi-agent systems with intermittent information transmissions. International Journal of Control, 2012, 85(4): 384-396
[14]  Xie G M, Wang L. Consensus control for a class of networks of dynamic agents. International Journal of Robust and Nonlinear Control, 2007, 17(10-11): 941-959
[15]  Ren W. On consensus algorithms for double-integrator dynamics. IEEE Transactions on Automatic Control, 2008, 53(6): 1503-1509
[16]  Abdessameud A, Tayebi A. On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints. Systems & Control Letters, 2010, 59(12): 812-821
[17]  Cao L, Zheng Y F, Zhou Q. A necessary and sufficient condition for consensus of continuous-time agents over undirected time-varying networks. IEEE Transactions on Automatic Control, 2011, 56(8): 1915-1920
[18]  Ren W, Atkins E. Distributed multi-vehicle coordinated control via local information exchange. International Journal of Robust and Nonlinear Control, 2007, 17(10-11): 1002-1033
[19]  Qin J H, Zheng W X, Gao H J. Consensus of multiple second-order vehicles with a time-varying reference signal under directed topology. Automatica, 2011, 47(9): 1983-1991
[20]  Ren W. Consensus strategies for cooperative control of vehicle formations. IET Control Theory and Applications, 2007, 1(2): 505-512
[21]  Ren W, Beard R W. Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications. Berlin: Springer-Verlag, 2008. 25-50
[22]  Callier F M, Desoer C A, Thomas J B. Multivariable Feedback Systems. New York: Springer-Verlag, 1982. 1-275
[23]  Munz U, Papachristodoulou A, Allgower F. Consensus in multi-agent systems with coupling delays and switching topology. IEEE Transactions on Automatic Control, 2011, 56(12): 2976-2982
[24]  Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 2004, 49(9): 1465-1476
[25]  Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3): 401-420
[26]  Su H S, Wang X F, Lin Z L. Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 2009, 54(2): 293-307
[27]  Dimarogonas D V, Kyriakopoulos K J. On the rendezvous problem for multiple nonholonomic agents. IEEE Transactions on Automatic Control, 2007, 52(5): 916-922
[28]  Ren W. Distributed attitude consensus among multiple networked spacecraft. In: Proceedings of the 2006 American Control Conference. New York: IEEE, 2006. 1760-1765
[29]  Sarlette A, Sepulchre R, Leonard N E. Autonomous rigid body attitude synchronization. Automatica, 2009, 45(2): 572-577
[30]  Gao Q, Groz R, von Bochmann G, Dargham J, Htite E H. Validation of distributed algorithms and protocols. In: Proceedings of the 1995 International Conference on Network Protocols. Tokyo: IEEE, 1995. 110-117
[31]  Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
[32]  Moreau L. Stability of continuous-time distributed consensus algorithms. In: Proceedings of the 43rd IEEE Conference on Decision and Control (CDC). Belgium: IEEE, 2004. 3998-4003
[33]  Ren W. Consensus tracking under directed interaction topologies: algorithms and experiments. IEEE Transactions on Control Systems Technology, 2010, 18(1): 230-237
[34]  Lin P, Jia Y M. Multi-agent consensus with diverse time-delays and jointly-connected topologies. Automatica, 2011, 47(4): 848-856
[35]  Gao Y P, Wang L. Consensus of multiple double-integrator agents with intermittent measurement. International Journal of Robust and Nonlinear Control, 2010, 20(10): 1140-1155
[36]  Wen G H, Duan Z S, Yu W W, Chen G R. Consensus in multi-agent systems with communication constraints. International Journal of Robust and Nonlinear Control, 2012, 22(2): 170-182
[37]  Lin Z Y, Broucke M, Francis B. Local control strategies for groups of mobile autonomous agents. IEEE Transactions on Automatic Control, 2004, 49(4): 622-629
[38]  Hong Y G, Gao L X, Cheng D Z, Hu J P. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Transactions on Automatic Control, 2007, 52(5): 943-948
[39]  Yu W W, Chen G R, Cao M. Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica, 2010, 46(6): 1089-1095
[40]  Liu C L, Liu F. Consensus problem of second-order dynamic agents with heterogeneous input and communication delays. International Journal of Computers Communications & Control, 2010, 5(3): 325-335
[41]  Khalil H K. Nonlinear Systems (Third edition). New Jersey: Prentice Hall, 2002. 355-356
[42]  Ruan S G, Wei J J. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dynamics of Continuous, Discrete and Impulsive Systems—Series A—Mathematical Analysis, 2003, 10(6): 863-874

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133