全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

线性离散周期系统研究综述

DOI: 10.3724/SP.J.1004.2013.00973, PP. 973-980

Keywords: 线性周期系统,离散系统,系统分析,系统综合

Full-Text   Cite this paper   Add to My Lib

Abstract:

?由于线性离散周期时变系统在理论和实践双重方面的重要意义,因此成为控制领域研究的重要课题.本文对目前线性离散周期系统的研究成果加以总结.以系统分析和综合为线索,着重介绍了线性离散周期系统的时不变重构、系统的结构属性、稳定性、零点、极点、模型降解及实现、故障诊断等问题所存在的典型方法.并对线性离散周期系统领域仍存在的问题和未来的发展方向作了进一步的展望.

References

[1]  Cole J W, Calico R A. Nonlinear oscillations of a controlled periodic system. AIAA Journal of Guidance, Control, and Dynamics, 1992, 15(3): 627-633
[2]  Allen M S, Sracic M W, Chauhan S, Hansen M H. Output-only modal analysis of linear time-periodic systems with application to wind turbine simulation data. Mechanical Systems and Signal Processing, 2011, 25(4): 1174-1191
[3]  Vaidyanathan P P. Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial. Proceedings of the IEEE, 1990, 78(1): 56-93
[4]  Kranc G M. Input-output analysis of multirate feedback systems. IRE Transactions on Automatic Control, 1957, 3(1): 21-28
[5]  Jury E I, Mullin F J. The analysis of sampled-data control systems with a periodically time-varying sampling rate. IRE Transactions on Automatic Control, 1959, AC-4(1): 15-21
[6]  Meyer R A, Burrus C S. A unified analysis of multirate and periodically time-varying digital filters. IEEE Transactions on Circuits and Systems, 1975, 22(3): 162-168
[7]  Flamm D S. A new shift-invariant representation for periodic linear systems. Systems and Control Letters, 1991, 17(1): 9-14
[8]  Colaneri P, Kucera V. The model matching problem for periodic discrete-time systems. IEEE Transactions on Automatic Control, 1997, 42(10): 1472-1476
[9]  Bittanti S, Guardabassi G, Maffezzoni C, Silverman L. Periodic systems: controllability and the matrix Riccati equation. SIAM Journal on Control and Optimization, 1978, 16(1): 37-40
[10]  Colaneri P, Souza C D, Kucera V. Output stabilizability of periodic systems: necessary and sufficient conditions. In: Proceedings of the 1998 American Control Conference. Philadelphia, USA: IEEE, 1998. 2795-2796
[11]  Desoer C A, Schulman J O. Zeros and poles of matrix transfer functions and their dynamical interpretation. IEEE Transactions on Circuits and Systems, 1974, 21(1): 3-8
[12]  Macfarlane A G J, Karcanias N. Poles and zeros of linear multivariable systems: a survey of the algebraic, geometric and complex-variable theory. International Journal of Control, 1976, 24(1): 33-74
[13]  Bolzern P, Colaneri P, Scattolini R. Zeros of discrete-time linear periodic systems. IEEE Transactions on Automatic Control, 1986, 31(11): 1057-1058
[14]  Grasselli O M, Longhi S. Finite zero structure of linear periodic discrete-time systems. International Journal of Systems Science, 1991, 22(10): 1785-1806
[15]  Colaneri P, Longhi S. The realization problem for linear periodic systems. Automatica, 1995, 31(5): 775-779
[16]  Gohberg I, Kaashoek M A, Lerer L. Minimality and realization of discrete time-varying systems. Operator Theory: Advances and Applications, 1992, 56: 261-296
[17]  Varga A. Computation of minimal periodic realizations of transfer-function matrices. IEEE Transactions on Automatic Control, 2004, 49(1): 146-149
[18]  Farhood M, Beck C L, Dullerud G E. Model reduction of periodic systems: a lifting approach. Automatica, 2005, 41(6): 1085-1090
[19]  Kwon W H, Pearson A E. On the stabilization of a discrete constant linear system. IEEE Transactions on Automatic Control, 1975, 20(6): 800-801
[20]  de Nicolao G, Strada S. On the stability of receding-horizon LQ control with zero-state terminal constraint. IEEE Transactions on Automatic Control, 1997, 42(2): 257-260
[21]  de Nicolao G. Cyclomonotonicity and stabilizability properties of solutions of the difference periodic Riccati equation. IEEE Transactions on Automatic Control, 1992, 37(9): 1405-1410
[22]  Bittanti S, Colaneri P, Nicolao G D. The difference periodic Riccati equation for the periodic prediction problem. IEEE Transactions on Automatic Control, 1988, 33(8): 706-712
[23]  Zhou B, Duan G R, Lin Z L. A parametric periodic Lyapunov equation with application in semi-global stabilization of discrete-time periodic systems subject to actuator saturation. Automatica, 2011, 47(2): 316-325
[24]  Sun K, Xie G M. Analysis and control of a class of uncertain linear periodic discrete-time systems. Applied Mathematics and Mechanics, 2009, 30(4): 475-488
[25]  Longhi S, Zulli R. A robust periodic pole assignment algorithm. IEEE Transactions on Automatic Control, 1995, 40(5): 890-894
[26]  Aeyels D, Willems J L. Pole assignment for linear periodic systems by memoryless output feedback. IEEE Transactions on Automatic Control, 1995, 40(4): 735-739
[27]  Lv L L, Duan G R, Su H B. Robust dynamical compensator design for discrete-time linear periodic systems. Journal of Global Optimization, 2012, 52(2): 291-304
[28]  Sreedhar J, van Dooren P, Bamieh B. Computing H∞-norm of discrete-time periodic systems-a quadratically convergent algorithm. In: Proceedings of the 1997 European Control Conference. Brussels, Belgium, 1997
[29]  Peaucelle D, Ebihara Y, Arzelier D. Robust H2 perfomance of discrete-time periodic systems: LMIs with reduced dimensions. In: Proceedings of the 17th World Congress the International Federation of Automatic Control. Seoul, Korea: IFAC, 2008. 1348-1353
[30]  Fadali M S, Gummuluri S. Robust observer-based fault detection for periodic systems. In: Proceedings of the 2001 American Control Conference. Arlington, VA: IEEE, 2001. 464-469
[31]  Zhang P, Ding S X, Wang G Z, Zhou D H. Fault detection of linear discrete-time periodic systems. IEEE Transactions on Automatic Control, 2005, 50(2): 239-244
[32]  Djemili I, Aitouche A, Bouamama B O. Sensors FDI scheme of linear discrete-time periodic systems using principal component analysis. In: Proceedings of 2010 Conference on Control and Fault-Tolerant Systems. Nice, France: IEEE, 2010. 203-208
[33]  van Paul D, Sreedhar J. When is a periodic discrete-time system equivalent to a time-invariant one? Linear Algebra and its Applications, 1994, 212-213: 131-151
[34]  DaCunha J J, Davis J M. A unified Floquet theory for discrete, continuous, and hybrid periodic linear systems. Journal of Differential Equations, 2011, 251(11): 2987-3027% (吕灵灵, 段广仁, 周彬. 线性离散周期系统输出反馈参数化极点配置. 自动化学报, 2010, 36(1): 113-120)%
[35]  Sreedhar J, van Dooren P. Periodic Schur form and some matrix equations. Systems and Networks: Mathematical Theory and Applications, 1993, 77: 339-362%
[36]  Zheng Yu-Hong, Wang Ping. A new approach to control satellite attitude via magnetorquers. Journal of Astronautics, 2000, 21(3): 94-99 (郑育红, 王平. 一种用磁力矩器控制卫星姿态的新方法. 宇航学报, 2000, 21(3): 94-99)
[37]  Nie J B, Sheh E, Horowitz R. Optimal H∞ control for hard disk drives with an irregular sampling rate. In: Proceedings of 2011 American Control Conference. San Francisco, USA: IEEE, 2011. 5382-5387
[38]  Chauvin J, Corde G, Petit N, Rouchon P. Periodic input estimation for linear periodic systems: automotive engine applications. Automatica, 2007, 43(6): 971-980
[39]  Wornell G W. Emerging applications of multirate signal processing and wavelets in digital communications. Proceedings of the IEEE, 1996, 84(4): 586-603
[40]  Bittanti S, Colaneri P. Invariant representations of discrete-time periodic systems. Automatica, 2000, 36(12): 1777-1793
[41]  Rriedland B. Sampled-data control systems containing periodically varying members. In: Proceedings of the 1st IFAC Congress. Moscow, U.S.S.R., 1960. 361-368
[42]  Park B, Verriest E I. Canonical forms on discrete linear periodically time-varying systems and a control application. In: Proceedings of the 28th IEEE Conference on Decision and Control. Tampa, USA: IEEE, 1989. 1220-1225
[43]  Bittanti S, Bolzern P. On the structure theory of discrete-time linear systems. International Journal of Systems Science, 1986, 17(1): 33-47
[44]  Bittanti S, Colaneri P, de Nicolao G. Discrete-time linear periodic systems: a note on the reachability and controllability interval length. Systems & Control Letters, 1986, 8(1): 75-78
[45]  Bittanti S, Colaneri P. Analysis of discrete-time linear periodic systems. Control and Dynamic Systems, 1996, 78: 313-339
[46]  Bittanti S, Colaneri P. Discrete-time linear periodic systems: gramian and modal criteria for reachability and controllability. International Journal of Control, 1985, 41(4): 909-928
[47]  Bittanti S, Bolzern P, Colaneri P. The extended periodic Lyapunov lemma. Automatica, 1985, 21(5): 603-605
[48]  Francis B A, Wonham W M. The role of transmission zeros in linear multivariable regulators. International Journal of Control, 1975, 22(5): 657-681
[49]  Morse A S. Structural invariants of linear multivariable systems. SIAM Journal on Control, 1973, 11(3): 446-465
[50]  Grasselli O M, Longhi S. Zeros and poles of linear periodic multivariable discrete-time systems. Circuits, Systems and Signal Processing, 1988, 7(3): 361-380
[51]  Varga A, van Dooren P. On computing the zeros of periodic systems. In: Proceeding of the 41st IEEE Conference on Decision and Control. Las Vegas, USA: IEEE, 2002. 2546-2551
[52]  Varga A. Balancing related methods for minimal realization of periodic systems. Systems & Control Letters, 1999, 36(5): 339-349
[53]  Varga A. Balanced truncation model reduction of periodic systems. In: Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, NSW: IEEE, 2000. 2379-2384
[54]  Kleinman D L. Stabilizing a discrete, constant, linear system with application to iterative methods for solving the Riccati equation. IEEE Transactions on Automatic Control, 1974, 19(3): 252-254
[55]  Kwon W H, Pearson A E. A modified quadratic cost problem and feedback stabilization of a linear system. IEEE Transactions on Automatic Control, 1977, 22(5): 838-842
[56]  de Nicolao G, Strada S. On the use of reachability Gramians for the stabilization of linear periodic systems. Automatica, 1997, 33(4): 729-732
[57]  Varga A, Pieters S. Gradient-based approach to solve optimal periodic output feedback control problems. Automatica, 1998, 34(4): 477-481
[58]  de Souza C E, Trofino A. An LMI approach to stabilization of linear discrete-time periodic systems. International Journal of Control, 2000, 73(8): 696-703
[59]  Zhou B, Zheng W X, Duan G R. Stability and stabilization of discrete-time periodic linear systems with actuator saturation. Automatica, 2011, 47(8): 1813-1820
[60]  Longhi S, Zulli R. A note on robust pole assignment for periodic systems. IEEE Transactions on Automatic Control, 1996, 41(10): 1493-1497
[61]  Sreedhar J, van Dooren P. Pole placement via the periodic Schur decomposition. In: Proceedings of the American Control Conference. San Francisco, USA: IEEE, 1993. 1563-1567
[62]  Hernández V, Urbano A M. Pole-placement problem for discrete-time linear periodic systems. International Journal of Control, 1989, 50(1): 361-371
[63]  Varga A. Robust and minimum norm pole assignment with periodic state feedback. IEEE Transactions on Automatic Control, 2000, 45(5): 1017-1022
[64]  Lv L L, Duan G R, Zhou B. Parametric pole assignment and robust pole assignment for discrete-time linear periodic systems. SIAM Journal on Control and Optimization, 2010, 48(6): 3975-3996
[65]  Varga A. Computation of L∞ norm of linear discrete-time periodic systems. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems. Kyoto, Japan, 2006
[66]  Wisniewski R, Stoustrup J. Generalized H2 control synthesis for periodic systems. In: Proceedings of the American Control Conference. Arlington, VA: IEEE, 2001. 2600-2605
[67]  Farges C, Peaucelle D, Arzelier D, Daafouz J. Robust H2 performance analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs. Systems & Control Letters, 2007, 56(2): 159-166
[68]  Ebihara Y, Peacelle D, Arzelier D. Periodically time-varying dynamical controller synthesis for polytopic-type uncertain discrete-time linear systems. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun: IEEE, 2008. 5438-5443
[69]  Varga A. Design of fault detection filters for periodic systems. In: Proceedings of the 43rd IEEE Conference on Decision and Control. Paradise Island, Bahamas: IEEE, 2004. 4800-4805
[70]  Zhang P, Ding S X. Disturbance decoupling in fault detection of linear periodic systems. Automatica, 2007, 43(8): 1410-1417
[71]  Gondhalekar R, Colin N J. MPC of constrained discrete-time linear periodic systems-A framework for asynchronous control: strong feasibility, stability and optimality via periodic invariance. Automatica, 2011, 47(2): 326-333
[72]  Hayakawa Y, Jimbo T. Floquet transformations for discrete-time systems: equivalence between periodic systems and time-invariant ones. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 5140-5145
[73]  Zhang W. Reinforcement Learning for Job-Shop Scheduling [Ph.D. dissertation], Peking University, China, 1996%
[74]  Larin V B. Solution of the discrete-time periodic Riccati equations (LMI approach). Stability and Control: Theory and Application, 2004, 6(2): 102-108

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133