全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于图像欧氏距离的二维局部多样性保持投影

DOI: 10.3724/SP.J.1004.2013.01062, PP. 1062-1070

Keywords: 二维主成分分析,多样性,流形学习,特征提取,人脸识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

?主成分分析可以较好地保持数据的全局多样性几何属性,在模式识别、机器学习、图像识别等领域有着很重要的作用.缺点是他不能较好地保持局部数据的多样性几何属性,且忽略了图像像素之间的相互关系,导致算法性能不够好,且对模式形变比较敏感.对此问题,提出了一种基于图像欧氏距离的二维局部多样性保持投影.该方法利用邻接图描述局部数据之间的变化关系,然后利用图像欧氏距离度量数据间的多样性几何属性,有效地将图像像素之间的相互关系嵌入到目标函数中.和主成分分析相比,所提方法较好地保持了局部数据的多样性几何属性,而且明确考虑了图像像素之间的相互关系,对模式形变具有好的鲁棒性.在Yale,AR及PIE三个人脸库上的实验结果证明了所提算法的有效性.

References

[1]  Fukunaga K. Introduction to statistical Pattern Recognition (Second edition). New York: Academic Press, 1990
[2]  Turk M A, Pentland A P. Face recognition using eigenfaces. In: Proceedings of the 1991 IEEE Computer Society Conferences on Computer Vision and Pattern Recognition. Maui, HI: IEEE, 1991. 586-591
[3]  Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
[4]  Gao Quan-Xue, Liang Yan, Pan Quan, Cheng Yong-Mei. Face recognition based on expressive features. Acta Automatica Sinica, 2006, 32(3): 386-392 (高全学, 梁彦, 潘泉, 程咏梅. 基于描述特征的人脸识别研究. 自动化学报, 2006, 32(3): 386-392)
[5]  He R, Hu B G, Zheng W S, Kong X W. Robust principal component analysis based on maximum correntropy criterion. IEEE Transactions on Image Processing, 2011, 20(6): 1485-1494
[6]  Fang Wei-Tao, Ma Peng, Cheng Zheng-Bin, Yang Dan, Zhang Xiao-Hong. 2-dimensional projective non-negative matrix factorization and its application to face recognition. Acta Automatica Sinica, 2012, 38(9): 1503-1512 (方蔚涛, 马鹏, 成正斌, 杨丹, 张小洪. 二维投影非负矩阵分解算法及其在人脸识别中的应用. 自动化学报, 2012, 38(9): 1503-1512)
[7]  Kong D G, Ding C H Q, Huang H, Nie F P. An iterative locally linear embedding algorithm. In: Proceeding of the 29th International Conference on Machine Learning (ICML), Edinburgh, Scotland, 2012. 1647-1654
[8]  You D, Hamsici O C, Martinez A M. Kernel optimization in discriminant analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 631-638
[9]  Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 15(5): 1299-1319
[10]  He X F, Yan S C, Hu Y X, Niyogi P, Zhang H J. Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
[11]  He X F, Cai D, Yan S C, Zhang H J. Neighborhood preserving embedding. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 1208-1213
[12]  Huang Y, Xu D, Nie F P. Semi-supervised dimension reduction using trace ratio criterion. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(3): 519-526
[13]  Hu D W, Feng G Y, Zhou Z T. Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition. Pattern Recognition, 2007, 40(1): 339-342
[14]  Gao Q X, Xu H, Li Y Y, Xie D Y. Two-dimensional supervised local similarity and diversity projection. Pattern Recognition, 2010, 43(10): 3359-3363
[15]  Gao Q X, Zhang H J, Liu J J. Two-dimensional margin, similarity and variation embedding. Neurocomputing, 2012, 86: 179-183
[16]  Wang L W, Zhang Y, Feng J F. On the Euclidean distance of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1334-1339
[17]  Fan Z Z, Xu Y, Zhang D. Local linear discriminant analysis framework using sample neighbors. IEEE Transactions on Neural Networks, 2011, 22(7): 1119-1132
[18]  Gao Quan-Xue, Xie De-Yan, Xu Hui, Li Yuan-Zheng, Gao Xi-Quan. Supervised feature extraction based on information fusion of local structure and diversity information. Acta Automatica Sinica, 2010, 36(8): 1107-1114 (高全学, 谢德燕, 徐辉, 李远征, 高西全. 融合局部结构和差异信息的监督特征提取算法. 自动化学报, 2010, 36(8): 1107-1114)
[19]  Gao Q X, Liu J J, Zhang H J, Hou J, Yang X J. Enhanced fisher discriminant criterion for image recognition. Pattern Recognition, 2012, 45(10): 3717-3724
[20]  Postnikov M M. Lectures in Geometry, Semester I: Analytic Geometry. Moscow: Mir Publishers, 1982
[21]  Golub G H, Van Loan C F. Matrix Computations (Third edition). Baltimore: The Johns Hopkins University Press, 1996
[22]  Yan S C, Xu D, Zhang B Y, Zhang H J. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51
[23]  Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137
[24]  Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326
[25]  Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133