全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于条件随机场和图像分割的显著性检测

DOI: 10.16383/j.aas.2015.c140328, PP. 711-724

Keywords: 显著性检测,多特征融合,条件随机场,图像分割

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对当前常见的显著性方法检测得到的显著性区域边界稀疏不明确、内部不均匀致密等问题,提出了一种基于条件随机场(Conditionrandomfield,CRF)和图像分割的显著性检测方法.该方法综合利用边界信息、局部信息以及全局信息,从图像中提取出多种显著性特征;在条件随机场框架下融合这些特征,通过显著性区域与背景区域的区域标注实现显著性区域的粗糙检测;结合区域标注结果和交互式图像分割方法实现显著性区域的精确检测.实验结果表明本文提出的方法能够清晰而准确地提取出图像中的显著性区域,有效提高显著性检测精度.

References

[1]  Loupias E, Sebe N, Bres S, Jolion J M. Wavelet-based salient points for image retrieval. In:Proceedings of the 2000 IEEE International Conference on Image Processing. Vancouver, British Columbia, Canada:IEEE, 2000, 2:518-521
[2]  Jian M W, Dong J Y, Ma J. Image retrieval using wavelet-based salient regions. The Imaging Science Journal, 2011, 59(4):219-231
[3]  Guo C L, Zhang L M. A novel multi-resolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Transactions on Image Processing, 2010, 19(1):185-198
[4]  Kim W, Kim C. A novel image importance model for content-aware image resizing. In:Proceedings of the 18th IEEE International Conference on Image Processing. Brussels, Belguim:IEEE, 2011. 2469-2472
[5]  Gupta R, Chaudhury S. A scheme for attentional video compression. In:Proceedings of the 4th International Conference on Pattern Recognition and Machine Intelligence. Berlin, Heidelberg:Springer-Verlag, 2011. 458-465
[6]  Itti L. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions on Image Processing, 2004, 13(10):1304-1318
[7]  Kanan C, Cottrell G. Robust classification of objects, faces, and flowers using natural image statistics. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, California, USA:IEEE, 2010. 2472-2479
[8]  Teuber H L. Physiological psychology. Annual Review of Psychology, 1955, 6:267-296
[9]  Wolfe J M, Horowitz T S. What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 2004, 5(6):495-501
[10]  Desimone R, Duncan J. Neural mechanisms of visual selective attention. Annual Review of Neuroscience, 1995, 18(1):193-222
[11]  Mannan S K, Kennard C, Husain M. The role of visual salience in directing eye movements in visual object agnosia. Current Biology, 2009, 19(6):247-248
[12]  Treisman A M, Gelade G. A feature-integration theory of attention. Cognitive Psychology, 1980, 12(1):97-136
[13]  Koch C, Ullman S. Shifts in selective visual attention:towards the underlying neural circuitry. Human Neurobiology, 1985, 4(4):219-227
[14]  Itti L, Koch C, Niebur E. A model of saliency-based visualattention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259
[15]  Harel J, Koch C, Perona P. Graph-based visual saliency. In:Proceedings of the 2006 Advances in Neural Information Processing Systems. Vancouver, British Columbia, Canada:Bradford Book, 2006. 545-552
[16]  Hansen L K, Karadogan S, Marchegiani L. What to measure next to improve decision making? On top-down task driven feature saliency. In:Proceedings of the 2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain. Paris, France:IEEE, 2011. 1-7
[17]  Baluch F, Itti L. Mechanisms of top-down attention. Trends in Neurosciences, 2011, 34(4):210-224
[18]  Itti L, Koch C. Computational modelling of visual attention. Nature Reviews Neuroscience, 2001, 2(3):194-203
[19]  Judd T, Ehinger K, Durand F, Torralba A. Learning to predict where humans look. In:Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009. 2106-2113
[20]  Liu T, Yuan Z, Sun J, Wang J D, Zheng N N, Tang X O, Shun H Y. Learning to detect a salient object. IEEE Transactions on Software Engineering, 2011, 33(2):353-367
[21]  Borji A, Itti L. Exploiting local and global patch rarities for saliency detection. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA:IEEE, 2012. 478-485
[22]  Jiang H Z, Wang J D, Yuan Z J, Wu Y, Zheng N N, Li S P. Salient object detection:a discriminative regional feature integration approach. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, Oregon, USA:IEEE, 2013. 2083-2090
[23]  Shen X, Wu Y. A unified approach to salient object detection via low rank matrix recovery. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA:IEEE, 2012. 853-860
[24]  Yan Q, Xu L, Shi J P, Jia J Y. Hierarchical saliency detection. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, Oregon, USA:IEEE, 2013. 1155-1162
[25]  Yang C, Zhang L H, Lu H C, Ruan X, Yang M H. Saliency detection via Graph-Based manifold Ranking. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, Oregon, USA:IEEE, 2013. 3166-3173
[26]  Li X H, Lu H C, Zhang L H, Ruan X, Yang M H. Saliency detection via dense and sparse reconstruction. In:Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia:IEEE, 2013. 2976-2983
[27]  Hu Y Q, Rajan D, Chia L T. Robust subspace analysis for detecting visual attention regions in images. In:Proceedings of the 13th Annual ACM International Conference on Multimedia. Santa Fe, New Mexico, USA:ACM, 2005. 716-724
[28]  Hou X D, Zhang L. Saliency detection:a spectral residual approach. In:Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota State, USA:IEEE, 2007. 1-8
[29]  Guo C L, Ma Q, Zhang L M. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA:IEEE, 2008. 1-8
[30]  Zhang Qiao-Rong, Gu Guo-Chang, Liu Hai-Bo, Xiao Hui-Min. Salient region detection using multi-scale analysis in the frequency domain. Journal of Harbin Engineering University, 2010, 31(3):361-365(张巧荣, 顾国昌, 刘海波, 肖会敏. 利用多尺度频域分析的图像显著区域检测. 哈尔滨工程大学学报, 2010, 31(3):361-365)
[31]  Lafferty J D, McCallum A, Pereira F C N. Conditional random fields:probabilistic models for segmenting and labeling sequence data. In:Proceedings of the 8th IEEE International Conference on Machine Learning. Williamstown, MA, USA:IEEE, 2001. 282-289
[32]  Rother C, Kolmogorov V, Blake A. Grabcut:interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 2004, 23(3):309-314
[33]  Kumar S, Hebert M. Discriminative random fields:a discriminative framework for contextual interaction in classification. In:Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France:IEEE, 2003, 2:1150-1157
[34]  Cheng M M, Zhang G X, Mitra N J, Huang X L, Hu S M. Global contrast based salient region detection. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, Colorado, USA:2011 IEEE, 2011. 409-416
[35]  Sun J, Lu H C, Li S F. Saliency detection based on integration of boundary and soft-segmentation. In:Proceedings of the 19th IEEE International Conference on Image Processing. Orlando, Florida, USA:IEEE, 2012. 1085-1088
[36]  Wei Y C, Wen F, Zhu W J, Sun J. Geodesic saliency using background priors. In:Proceedings of the 12th European conference on Computer Vision-Volume Part Ⅲ. Berlin, Heidelberg:Springer-Verlag, 2012. 29-42
[37]  Borji A, Sihite D N, Itti L. Salient object detection:A benchmark. In:Proceedings of the 12th European conference on Computer Vision-Volume Part Ⅱ. Berlin, Heidelberg:Springer-Verlag, 2012. 414-429
[38]  Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282
[39]  Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-tuned salient region detection. In:Proceedings of the 2009 IEEE International Conference on Computer Vision and Pattern Recognition. Miami Beach, Florida, USA:IEEE, 2009. 1597-1604
[40]  Achanta R, Susstrunk S. Saliency detection using maximum symmetric surround. In:Proceedings of the 2010 IEEE International Conference on Image Processing. Hong Kong, China:IEEE, 2010. 2653-2656
[41]  Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs, New Jersey, USA:Prentice Hall, 1989. 51
[42]  Thomas S W. Efficient inverse color map computation. Graphics Gems Ⅱ. Boston:Academic Press, 1991:116-125
[43]  Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66
[44]  Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10):1915-1926
[45]  Jiang H Z, Wang J D, Yuan Z J, Liu T, Zheng N N. Automatic salient object segmentation based on context and shape prior. In:Proceedings of the 2011 British Machine Vision Conference. Dundee, Scotland, UK:BMVA Press, 2011. 1-12
[46]  Rahtu E, Kannala J, Salo M, Heikkil? J. Segmenting salient objects from images and videos. In:Proceedings of the 11th European conference on Computer Vision——-Part V. Berlin, Heidelberg:Springer-Verlag, 2010. 366-379

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133