Meller R D, Gau K Y. The facility layout problem: recent and emerging trends and perspectives. Journal of Manufacturing Systems, 1996, 15(5): 351-366
[2]
Drira A, Pierreval H, Hajri-Gabouj S. Facility layout problems: a survey. Annual Reviews in Control, 2007, 31(3): 255-267
[3]
Braglia M, Zanoni S, Zavanella L. Layout design in dynamic environments: strategies and quantitative indices. International Journal of Production Research, 2003, 41(5): 995-1016
[4]
Heragu S S, Kusiak A. Machine layout problem in flexible manufacturing systems. Operations Research, 1988, 36(2): 258-268
[5]
Solimanpur M, Vrat P, Shankar R. An ant algorithm for the single row layout problem in flexible manufacturing systems. Computers & Operations Research, 2005, 32(3): 583-598
[6]
Djellab H, Gourgand A. A new heuristic procedure for the single-row facility layout problem. International Journal of Computer Integrated Manufacturing, 2001, 14(3): 270-280
[7]
Heragu S S, Kusiak A. Efficient models for the facility layout problem. European Journal of Operational Research, 1991, 53(1): 1-13
[8]
Anjos M F, Vannelli A. Computing globally optimal solutions for single-row layout problems using semidefinite programming and cutting planes. INFORMS Journal on Computing, 2008, 20(4): 611-617
[9]
Kumar K R, Hadjinicola G C, Lin T L. A heuristic procedure for the single-row facility layout problem. European Journal of Operational Research, 1995, 87(1): 65-73
[10]
Datta D, Amaral A R S, Figueira J R. Single row facility layout problem using a permutation-based genetic algorithm. European Journal of Operational Research, 2011, 213(2): 388-394
[11]
Kothari R, Ghosh D. Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods. European Journal of Operational Research, 2013, 224(1): 93-100
[12]
Samarghandi H, Taabayan P, Jahantigh F F. A particle swarm optimization for the single row facility layout problem. Computers & Industrial Engineering, 2010, 58(4): 529-534
[13]
Sadrzadeh A. A genetic algorithm with the heuristic procedure to solve the multi-line layout problem. Computers & Industrial Engineering, 2012, 62(4): 1055-1064
[14]
Singh S P, Sharma R R K. Two-level modified simulated annealing based approach for solving facility layout problem. International Journal of Production Research, 2008, 46(13): 3563-3582
[15]
Kouvelis P, Chiang W C, Yu G. Optimal algorithms for row layout problems in automated manufacturing systems. IIE Transactions, 1995, 27(1): 99-104
[16]
Gen M, Ida K, Cheng C H. Multirow machine layout problem in fuzzy environment using genetic algorithms. Computers & Industrial Engineering, 1995, 29(1-4): 519-523
[17]
Sadrzadeh A. A genetic algorithm with the heuristic procedure to solve the multi-line layout problem. Computers & Industrial Engineering, 2012, 62(4): 1055-1064
[18]
Chung J, Tanchoco J M A. The double row layout problem. International Journal of Production Research, 2010, 48(3): 709-727
[19]
Zhang Z Q, Murray C C. A corrected formulation for the double row layout problem. International Journal of Production Research, 2012, 50(15): 4220-4223
[20]
Murray C C, Smith A E, Zhang Z Q. An efficient local search heuristic for the double row layout problem with asymmetric material flow. International Journal of Production Research, 2013, 51(20): 6129-6139
Amaral A R S. Optimal solutions for the double row layout problem. Optimization Letters, 2013, 7(2): 407-413
[23]
Turley J. The Essential Guide to Semiconductors. Upper Saddle River, NJ: Prentice Hall, 2002.
[24]
Murray C C, Zuo X Q, Smith A E. An extended double row layout problem. Progress in Material Handling Research. Charlotte, North Carolina: Material Handling Industry of America Press, 2012.
[25]
Chow C K, Yuen S Y. A multiobjective evolutionary algorithm that diversifies population by its density. IEEE Transactions on Evolutionary Computation, 2012, 16(2): 149-172
[26]
Kong Wei-Jian, Chai Tian-You, Ding Jin-Liang, Wu Zhi-Wei. A real-time multiobjective electric energy allocation optimization approach for the smelting process of magnesia. Acta Automatica Sinica, 2014, 40(1): 51-61(孔维键, 柴天佑, 丁进良, 吴志伟. 镁砂熔炼过程全厂电能分配实时多目标优化方法研究. 自动化学报, 2014, 40(1): 51-61)
[27]
Han Min, Liu Chuang, Xing Jun. A multi-objective evolutionary algorithm based on membrane system theory. Acta Automatica Sinica, 2014, 40(3): 431-438 ( 韩敏, 刘闯, 邢军. 一种基于膜系统理论的多目标演化算法. 自动化学报, 2014, 40(3): 431-438)
[28]
Zuo Xing-Quan, Mo Hong-Wei. Immune Scheduling Principles with Applications. Beijing: Science Press, 2013. (左兴权, 莫宏伟. 免疫调度原理与应用. 北京: 科学出版社, 2013.)
[29]
Zuo X Q, Tan W, Lin H P. Cigarette production scheduling by combining workflow model and immune algorithm. IEEE Transactions on Automation Science and Engineering, 2014, 11(1): 251-264
[30]
Zuo X Q, Mo H W, Wu J P. A robust scheduling method based on a multi-objective immune algorithm. Information Sciences, 2009, 179(19): 3359-3369
[31]
Qi Y T, Liu F, Liu M Y, Gong M G, Jiao L C. Multi-objective immune algorithm with Baldwinian learning. Applied Soft Computing, 2012, 12(8): 2654-2674
[32]
Yu M, Zuo X Q, Murray C C. A tabu search heuristic for the single row layout problem with shared clearances. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation. Beijing, China: IEEE, 2014. 819-825
[33]
de Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251
[34]
Miettinen K. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers, 1999
[35]
Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197
[36]
Aiello G, Enea M, Galante G. A multi-objective approach to facility layout problem by genetic search algorithm and electre method. Robotics and Computer-Integrated Manufacturing, 2006, 22(5-6): 447-455