全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于分块奇异值分解的两级图像去噪算法

DOI: 10.16383/j.aas.2015.c130909, PP. 439-444

Keywords: 奇异值分解,图像去噪,相似块分组,图像纹理细节

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为了更有效地进行图像去噪,提出了一种基于分块奇异值分解(Singularvaluedecomposition,SVD)的两级图像去噪方法,该方法首先将含噪图像中具有相似结构的图像块组织成具有很强相关性的图像块组;然后,利用二维奇异值分解去除图像块组中每个相似块的内部相关性,利用一维奇异值分解去除相似图像块组之间的冗余;最后,通过硬阈值方法收缩变换系数实现图像与噪声的有效分离.为了进一步提高去噪效果,对含噪图像再次进行上述操作.不同的是,在第二级去噪过程中,相似图像块组根据第一级估计出的图像计算获得且相似图像块间的相关性通过离散余弦变换去除.仿真实验表明,提出的两级图像去噪算法不仅可以较大程度地去除图像噪声,还能有效保留图像细节,取得了良好的去噪效果.

References

[1]  Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 60-65
[2]  Easley G R, Labate D, Colonna F. Shearlet based total variation for denoising. IEEE Transactions on Image Processing, 2009, 16(2): 260-268
[3]  Xie Kai, Zhang Fen. Overcomplete representation base image denoising algorithm. Acta Electronica Sinica, 2013, 41(10): 1911-1916(解凯, 张芬. 基于过完备表示的图像去噪算法. 电子学报, 2013, {\bf 41}(10): 1911-1916)
[4]  Huang D A, Kang L W, Wang Y C, Lin C W. Self-learning based image decomposition with applications to single image denoising. IEEE Transactions on Multimedia, 2014, 16(1): 83-93
[5]  Xue Qian, Yang Cheng-Yi, Wang Hua-Xiang. Alternating direction method for salt-and-pepper denoising. Acta Automatica Sinica, 2013, 39(12): 2071-2076(薛倩, 杨程屹, 王化祥. 去除椒盐噪声的交替方向法. 自动化学报, 2013, 39(12): 2071-2076)
[6]  Mahmoudi M, Sapiro G. Fast image and video denoising via non-local means of similar neighborhoods. IEEE Signal Processing Letters, 2005, 12(12): 839-842
[7]  Yan R M, Shao L, Cvetkovic S D, Klijn J. Improved nonlocal means based on pre-classification and invariant block matching. Journal of Display Technology, 2012, 8(4): 212-218
[8]  Zhang X D, Feng X C, Wang W W. Two-direction nonlocal model for image denoising. IEEE Transactions on Image Processing, 2013, 22(1): 408-412
[9]  Hao Hong-Xia, Liu Fang, Jiao Li-Cheng, Wu Jie. A non-local means algorithm for image denoising using structure adaptive window. Journal of Xi'an Jiaotong University, 2013, 47(12): 71-76(郝红侠, 刘芳, 焦李成, 武杰. 采用结构自适应窗的非局部均值图像去噪算法. 西安交通大学学报, 2013, 47(12): 71-76)
[10]  Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745
[11]  Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095
[12]  Muresan D D, Parks T W. Adaptive principal components and image denoising. In: Proceedings of the 2003 International Conference on Image Processing. Barcelona, Spain: IEEE, 2003. 101-104
[13]  Zhang L, Dong W S, Zhang D, Shi G M. Two-stage image denoisng by principal component analysis with local pixel grouping. Pattern Recognition, 2010, 43(4): 1531-1549
[14]  He Y M, Gan T, Chen W F, Wang H J. Adaptive denoising by singular value decomposition. IEEE Signal Processing Letters, 2011, 18(4): 215-219
[15]  Dabov K, Foi A, Katkovnik V, Egiazarian K. BM3D image denoising with shape-adaptive principal component analysis. In: Proceedings of the 2009 Workshop on Signal Processing with Adaptive Sparse Structured Representations. Saint-Malo, France: IEEE, 2009. 1-6
[16]  Wang H C, Ahuja N. Rank-R approximation of tensors using image-as-matrix representation. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 346-353
[17]  Ding C, Ye J P. Two-dimensional singular value decomposition (2DSVD) for 2D Maps and images. In: Proceedings of the 2005 SIAM International Conference on Data Mining. Newpot Beach, USA: SIAM, 2005. 32-43
[18]  Maj J B, Royackers L, Moonen M, Wouters J. SVD-based optimal filtering for noise reduction in dual microphone hearing aids: a real reduction time implementation and perceptual evaluation. IEEE Transactions on Biomedical Engineering, 2005, 52(9): 1563-1573
[19]  Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one. SIAM Journal on Multiscale Modeling and Simulation, 2005, 4(2): 490-530
[20]  Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage. Biometrica, 1994, 81: 425-455
[21]  Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133