Adomavicius G, Tuzhilin A. Toward the next generationof recommendersystems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749
[2]
Pan R, Zhou Y H, Cao B, Liu N N, Lukose R, Scholz M, Yang Q. One-class collaborative filtering. In: Proceedings of the 2008 IEEE International Conference on Data Mining. Pisa, Italy: IEEE, 2008. 502-511
[3]
Pan R, Scholz M. Mind the gaps: weighting the unknown in large-scale one-class collaborative filtering. In: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining. Paris, France: ACM, 2009. 667-676
[4]
Hu Y, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets. In: Proceedings of the 8th IEEE International Conference on Data Mining. Pisa, Italy: IEEE, 2008. 263-272
[5]
Sindhwani V, Bucak S S, Hu J, Mojsilovi A. One-class matrix completion with low-density factorizations. In: Proceedings of the 10th IEEE International Conference on Data Mining. Sydney, NSW: IEEE, 2010. 1055-1060
[6]
Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L. BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the 25th International Conference on Uncertainty in Artificial Intelligence. Montreal, Canada: IEEE, 2009. 452-461
[7]
Shi Y, Karatzoglou A, Baltrunas L. CLiMF: collaborative less-is-more filtering. In: Proceedings of the 23rd International Conference on Artificial Intelligence. Beijing, China: ACM, 2013. 3077-3081
[8]
Shi Y, Karatzoglou A, Baltrunas L, Larson M, Oliver N, Hanjalic A. CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering. In: Proceedings of the 6th ACM Conference on Recommender Systems. Dublin. Irland: ACM, 2012. 139-146
[9]
Pan W K, Chen L. GBPR: group preference based Bayesian personalized ranking for one-class collaborative filtering. In: Proceedings of the 23rd International Conference on Artificial Intelligence. Beijing, China: ACM, 2013. 3007-3011
[10]
Du L, Li X, Shen Y D. User graph regularized pairwise matrix factorization for item recommendation. In: Proceedings of the 7th International Conference on Advanced Data Mining and Applications. Berlin, German: ACM, 2011. 372-385
[11]
Rendle S, Schmidt-Thieme L. Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2010. 81-90
[12]
Yang S, Long B, Alexander J, Zha H, Zheng Z. Collaborative competitive filtering: learning recommender using context of user choice. In: Proceedings of the 34th ACM International Conference on Research and Development in Information Retrieval. Beijing, China: ACM, 2011. 295-304
[13]
Kanagal B, Ahmed A, Pandey S, Josifovski V, Yuan J, Garcia-Pueyo L. Supercharging recommender systems using taxonomies for learning user purchase behavior. In: Proceedings of the 2012 VLDB Endowment. Istanbul, Turkey: ACM, 2012. 956-967
[14]
Carvalho V, Elsas J, Cohen W, Carbonell J. A meta-learning approach for robust rank learning. In: Proceedings of the 22nd International Conference on Research and Development in Information Retrieval. Singapore, Singapore: ACM, 2008. 208-214
[15]
Tsai M F, Liu T Y, Qin T, Chen H H, Ma W Y. Frank: a ranking method with fidelity loss. In: Proceedings of the 21st International Conference on Research and Development in Information Retrieval. Amsterdam, Holland: ACM, 2007. 383-390
[16]
Scholkopf B, Platt J C, Shawe-Taylor J, Smola A J, Williamson R C. Estimating the support of a high-dimensional distribution. Neural Computation, 2001, 13(7): 1443-1471
[17]
Zhang S, Wang W H, Ford J, Makedon F, Pearlman J. Using singular value decomposition approximation for collaborative filtering. In: Proceedings of the 7th IEEE International Conference on E-Commerce. München, German: IEEE, 2005. 257-264
[18]
Li Y N, Zhai C X, Hu J, Chen Y. Improving one-class collaborative filtering by incorporating rich user information. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2010. 959-968
[19]
Kaya H, Alpaslan F N. Using social networks to solve data sparsity problem in one-class collaborative filtering. In: Proceedings of the 7th IEEE International Conference on Information Technology. Las Vegas, NV: IEEE, 2010. 249-252
[20]
Wang C, Blei D M. Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, CA: ACM, 2011. 448-456
[21]
Purushotham S, Liu Y, Kuo C. Collaborative topic regression with social matrix factorization for recommendation systems. In: Proceedings of the 29th ACM International Conference on Machine Learing. Edinburgh, Scotland, UK: ACM, 2012. 1255-1265
[22]
Ding X T, Jin X M, Li Y J, Li L H. Celebrity recommendation with collaborative social topic regression. In: Proceedings of the 23rd International Conference on Artificial Intelligence. Beijing, China: ACM, 2013. 2612-2618
[23]
Tang J, Yan J, Ji L, Zhang M, Guo S D, Liu N, Wang X F, Chen Z. Collaborative users' brand preference mining across multiple domains from implicit feedbacks. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI, 2011. 477-482
[24]
Celma O. Music Recommendation and Discovery in the Long Tail. New York: Springer, 2010.
[25]
Liu Tie-Yan. Learning to Rank for Information Retrieval. New York: Springer, 2011.
[26]
Deshpande M, Karypis G. Item-based top-N recommendation algorithms. ACM Transactions on Information Systems, 2004, 22(1):143-177
[27]
Yang Zhen, Lai Ying-Xu, Duan Li-Juan, Li Yu-Jian, Xu Xin. Spam collaborative filtering in enron E-mail network. Acta Automatica Sinica, 2012, 38(3): 399-411 (杨震, 赖英旭, 段立娟, 李玉鑑, 许昕. 邮件网络协同过滤机制研究. 自动化学报, 2012, 38(3): 399-411)