全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于全变分的运动分割模型及分裂Bregman算法

DOI: 10.16383/j.aas.2015.c140255, PP. 396-404

Keywords: 运动分割,运动估计,全变分,分裂Bregman算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?提出了一种基于全变分的运动分割模型,可以适用于2D/3D视频.首先,通过活动轮廓模型将分割与估计融合在同一能量函数中,该模型能够同时进行分割曲面的演化和运动参数的估计.其次,通过凸松弛方法将原始问题转化为等价的全变分模型,克服了局部最小值问题.最后,采用分裂Bregman快速算法进行求解.多组实验证明了本文方法对2D/3D视频的通用性和算法的高效性.

References

[1]  Nikolov B, Kostov N, Yordanova S. Investigation of mixture of Gaussians method for background subtraction in traffic surveillance. International Journal of Reasoning-based Intelligent Systems, 2013, 5(3): 161-168
[2]  Zhou X W, Yang C, Yu W C. Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 597-610
[3]  Weinland D, Ronfard R, Boyer E. A survey of vision-based methods for action representation, segmentation and recognition. Computer Vision and Image Understanding, 2011, 115(2): 224-241
[4]  Pinto A M, Correia M V, Paulo M A, Costa P G. Unsupervised flow-based motion analysis for an autonomous moving system. Image and Vision Computing, 2014, 32(6-7): 391-404
[5]  Soheilian B, Paparoditis N, Vallet B. Detection and 3D reconstruction of traffic signs from multiple view color images. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 77: 1-20
[6]  Wu Q B, Xiong J, Luo B, Wang Z N. A segmentation-based chroma intra prediction coding scheme for H.264/AVC. Circuits, Systems, and Signal Processing, 2014, 33(3): 939-957
[7]  Whitaker T R. A level-set approach to 3D reconstruction from range data. The International Journal of Computer Vision, 1998, 29(3): 203-231
[8]  Chan T F, Esedoglu S, Nikolova M. Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics, 2004, 66(5): 1632-1648
[9]  Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 259-268
[10]  Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685
[11]  Bresson X, Chan T F. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging, 2008, 2(4): 455-484
[12]  Zach C, Pock T, Bischof H. A duality based approach for realtime Tv-L1 optical flow. In: Proceedings of the 29th DAGM Conference on Pattern Recognition. Berlin, Heidelberg: IEEE, 2007. 214-223
[13]  Vese L A, Chan T F. A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 2002, 50(3): 271-293
[14]  Mansouri A R, Mitiche A, EI-Feghali R. Spatio-temporal motion segmentation via level set partial differential equations. In: Proceedings of the 5th IEEE Southwest Symposium on Image Analysis and Interpretation, Santa Fe, USA: IEEE, 2002. 243-247
[15]  Wang S Y, Yu H M, Hu R. 3D video based segmentation and motion estimation with active surface evolution. Journal of Signal Processing Systems, 2013, 71(1): 21-34
[16]  Wang S Y, Yu H M. Primal-dual method for spatiotemporal tracking model with moving background. Journal of Zhejiang University (Engineering Science), 2013, 47(4): 630-637
[17]  Chan T F, Golub G H, Mulet P. A nonlinear primal dual method for total variation-based image restoration. SIAM Journal of Scientific Computing, 1999, 20(6): 1964-1977
[18]  Chambolle A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 2004, 20(1-2): 89-97
[19]  Bresson X, Esedoglu S, Vandergheynst P, Thiran J, Osher S. Fast global minimization of the active contour/snake models. Journal of Mathematical Imaging and Vision, 2007, 28(2):151-167
[20]  Bregman L M. The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 1967, 7(3): 200-217
[21]  Osher S, Burger M, Goldfarb D, Xu J J, Yin W T. An iterative regularization method for total variation-based image restoration. Multiscale Modeling and Simulation, 2005, 4(2): 460-489

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133