全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

最大规范化依赖性多标记半监督学习方法

DOI: 10.16383/j.aas.2015.c140893, PP. 1577-1588

Keywords: 规范化依赖性,多标记学习,半监督学习,迹比值

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对现有多标记学习方法大多属于有监督学习方法,而不能有效利用相对便宜且容易获得的大量未标记样本的问题,本文提出了一种新的多标记半监督学习方法,称为最大规范化依赖性多标记半监督学习方法(Normalizeddependencemaximizationmulti-labelsemi-supervisedlearningmethod).该方法将已有标签作为约束条件,利用所有样本,包括已标记和未标记样本,对特征集和标签集的规范化依赖性进行估计,并以该估计值的最大化为目标,最终通过求解带边界的迹比值问题为未标记样本打上标签.与其他经典多标记学习方法在多个真实多标记数据集上的对比实验表明,本文方法可以有效从已标记和未标记样本中学习,尤其是已标记样本相对稀少时,学习效果得到了显著提高.

References

[1]  Gretton A, Smola A, Bousquet O, Herbrich R, Belitski A, Augath M, Murayama Y, Pauls J, Sch?lkopf B, Logothetis N. Kernel constrained covariance for dependence measurement. In: Proceedings of 10th International Workshop on Artificial Intelligence and Statistics. New Jersey, USA: Society for Artificial Intelligence and Statistics, 2005. 12-23
[2]  Gretton A, Bousquet B, Smola A, Sch?lkopf B. Measuring statistical dependence with Hilbert-Schmidt norms. In: Proceedings of 16th International Conference on Algorithmic Learning Theory. Singapore: Springer, 2005. 63-77
[3]  Bach F R, Jordan M I. Kernel independent component analysis. Journal of Machine Learning Research, 2002, 3: 1-48
[4]  Song L, Smola A, Gretton A, Borgwardt K M. A dependence maximization view of clustering. In: Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007. 815-822
[5]  Blaschko M, Gretton A. Learning taxonomies by dependence maximization. In: Proceedings of Advances in Neural Information Processing Systems. Cambridge, Massachusetts, USA: MIT Press, 2008. 153-160
[6]  Zhang Y, Zhou Z H. Multi-label dimensionality reduction via dependency maximization. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence. California, USA: AAAI Press, 2008. 1503-1505
[7]  Gretton A, Fukumizu K, Teo C H, L. Song, Sch?lkopf B, Smola A J. A kernel statistical test of independence. In: Proceedings of Advances in Neural Information Processing Systems. Cambridge, Massachusetts, USA: MIT Press, 2008. 582-592
[8]  Jia Y Q, Nie F P, Zhang C S. Trace ratio problem revisited. IEEE Transactions on Neural Networks, 2009, 20(4): 729-735
[9]  Wang H, Yan S C, Xu D, Tang X O, Huang T. Trace ratio vs. ratio trace for dimensionality reduction. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007. 1-8
[10]  Boutell M R, Luo J B, Shen X P, Brown C M. Learning multi-label scene classification. Pattern Recognition, 2004, 37(9): 1757-1771
[11]  Trohidis K, Tsoumakas G, Kalliris G, Vlahavas I P. Multi-label classification of music into emotions. In: Proceedings of the 9th International Conference on Music Information Retrieval. Philadelphia, USA: Drexel University, 2008. 325-330
[12]  Katakis I, Tsoumakas G, Vlahavas I. Multilabel text classification for automated tag suggestion. In: Proceedings of the ECML/PKDD 2008 Discovery Challenge. Heidelberg, Berlin: Springer, 2008. 75-83
[13]  Lewis D D, Yang Y M, Rose T G, Li F. RCV1: a new benchmark collection for text categorization research. Journal of Machine Learning Research, 2004, 5: 361-397
[14]  Tsoumakas G, Vilcek J, Xioufis E S. Mulan: a java library for multi-label learning [Online], available: http://mulan.sourceforge.net/datasets.html, January 1, 2010
[15]  Schapire R E, Singer Y. Boostexter: a boosting-based system for text categorization. Machine Learning, 2000, 39(2-3): 135-168
[16]  Tsoumakas G, Ioannis K, Ioannis V. Mining multi-label data. Data Mining and Knowledge Discovery Handbook. Berlin: Springer-Verlag, 2010. 667-685
[17]  Zhang M L, Zhou Z H. A review on multi-label learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837
[18]  Read J, Pfahringer B, Holmes G, Frank E. Classifier chains for multi-label classification. Machine Learning, 2011, 85(3): 333-359
[19]  Tsoumakas G, Katakis I, Vlahavas I. Random k-labelsets for multi-label classification. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(7): 1079-1089
[20]  Tsoumakas G, Vlahavas I. Random k-labelsets: an ensemble method for multilabel classification. In: Proceedings of the 18th European Conference on Machine Learning. Warsaw, Poland: Springer, 2007. 406-417
[21]  Zhang M L, Zhou Z H. A k-nearest neighbor based algorithm for multi-label classification. In: Proceedings of the 2005 IEEE International Conference on Granular Computing. New York, USA: IEEE, 2005. 718-721
[22]  Elisseeff A, Weston J. A kernel method for multi-labelled classification. In: Proceedings of Advances in Neural Information Processing Systems. Cambridge, Massachusetts, USA: MIT Press, 2001. 681-687
[23]  Zha Z J, Mei T, Wang J D, Wang Z F, Hua X S. Graph-based semi-supervised learning with multiple labels. Journal of Visual Communication and Image Representation, 2009, 20(2): 97-103
[24]  Chen G, Song Y Q, Wang F, Zhang C S. Semi-supervised multi-label learning by solving a Sylvester equation. In: Proceedings of the 2008 SIAM International Conference on Data Mining. Atlanta, USA: Curran Associates, 2008. 410-419
[25]  Li Yu-Feng, Huang Sheng-Jun, Zhou Zhi-Hua. Regularized semi-supervised multi-label learning. Journal of Computer Research and Development, 2012, 49(6): 1272-1278(李宇峰, 黄圣君, 周志华. 一种基于正则化的半监督多标记学习方法. 计算机研究与发展, 2012, 49(6): 1272-1278)
[26]  Wang J D, Zhao Y H, Wu X Q, Hua X S. A transductive multi-label learning approach for video concept detection. Pattern Recognition, 2011, 44(10-11): 2274-2286
[27]  Guo Y H, Schuurmans D. Semi-supervised multi-label classification. In: Proceedings of the 2012 European Conference, Machine Learning and Knowledge Discovery in Databases. Bristol, UK: Springer, 2012. 355-370
[28]  Wu L, Zhang M L. Multi-Label classification with unlabeled data: an inductive approach. In: Proceedings of the 2013 Asian Conference on Machine Learning. Cambridge, Massachusetts, USA: MIT Press/JMLR, 2013. 197-212
[29]  Liu Y, Jin R, Yang L. Semi-supervised multi-label learning by constrained non-negative matrix factorization. In: Proceedings of the 21st National Conference on Artificial Intelligence. California, USA: AAAI Press, 2006. 421-426
[30]  Kong X N, Ng M K, Zhou Z H. Transductive multilabel learning via label set propagation. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(3): 704-719

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133