全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于流行度分类特征的托攻击检测算法

DOI: 10.16383/j.aas.2015.c150040, PP. 1563-1576

Keywords: 协同过滤,托攻击,项目流行度,幂律分布,基于流行度的分类特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

?基于协同过滤的推荐系统容易受到托攻击的危害,如何检测托攻击成为推荐系统可靠性的关键.针对现有托攻击检测手段使用基于评分的分类特征易受混淆技术干扰的局限,本文从用户选择评分项目方式入手,分析由此造成的用户概貌中已评分项目的流行度分布情况的不同,提出用于区分正常用户与虚假用户基于流行度的分类特征,进而得到基于流行度的托攻击检测算法.实验表明该算法在托攻击检测中具有更强的检测性能与抗干扰性.

References

[1]  Mobasher B, Burke R, Bhaumik R, Sandvig J J. Attacks and remedies in collaborative recommendation. IEEE Intelligent Systems, 2007, 22(3): 56-63
[2]  Chen J, Luo D L, Mu F X. An improved ID3 decision tree algorithm. In: Proceedings of the 4th International Conference on Computer Science & Education. Nanning: IEEE, 2009. 127-130
[3]  Borrás J, Moreno A, Valls A. Intelligent tourism recommender systems: a survey. Expert Systems with Applications, 2014, 41(16): 7370-7389
[4]  Qu M, Zhu H S, Liu J M, Liu G N, Xiong H. A cost-effective recommender system for taxi drivers. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014. 45-54
[5]  Chung N, Koo C, Kim J K. Extrinsic and intrinsic motivation for using a booth recommender system service on exhibition attendees' unplanned visit behavior. Computers in Human Behavior, 2014, 30: 59-68
[6]  Gao M, Wu Z F, Jiang F. Userrank for item-based collaborative filtering recommendation. Information Processing Letters, 2011, 111(9): 440-446
[7]  Li Cong, Luo Zhi-Gang. A metadata-enhanced variational bayesian matrix factorization model for robust collaborative recommendation. Acta Automatica Sinica, 2011, 37(9): 1067-1076(李聪, 骆志刚. 用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型. 自动化学报, 2011, 37(9): 1067-1076)
[8]  Li C, Luo Z G. Detection of shilling attacks in collaborative filtering recommender systems. In: Proceedings of the 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR). Dalian, China: IEEE, 2011. 190-193
[9]  Mobasher B, Burke R, Williams C, Bhaumik R. Analysis and detection of segment-focused attacks against collaborative recommendation. In: Proceeding of the 7th International Workshop on Knowledge Discovery on the Web, Advances in Web Mining and Web Usage Analysis. Berlin, Heidelberg: Springer, 2006. 96-118
[10]  Seminario C E, Wilson D C. Attacking item-based recommender systems with power items. In: Proceedings of the 8th ACM Conference on Recommender Systems. New York: ACM, 2014. 57-64
[11]  Xia H, Fang B, Gao M, Ma H, Tang Y Y, Wen J. A novel item anomaly detection approach against shilling attacks in collaborative recommendation systems using the dynamic time interval segmentation technique. Information Sciences, 2015, 306: 150-165
[12]  Zhang Z, Kulkarni S R. Detection of shilling attacks in recommender systems via spectral clustering. In: Proceedings of the 17th International Conference on Information Fusion (FUSION). Salamanca: IEEE, 2014. 1-8
[13]  Gunes I, Kaleli C, Bilge A, Polat H. Shilling attacks against recommender systems: a comprehensive survey. Artificial Intelligence Review, 2014, 42(4): 767-799
[14]  Wu Zhi-Ang, Wang You-Quan, Cao Jie. A survey on shilling attack models and detection techniques for recommender systems. Chinese Science Bulletin, 2014, 59(7): 551-560(伍之昂, 王有权, 曹杰. 推荐系统托攻击模型与检测技术. 科学通报, 2014, 59(7): 551-560)
[15]  Wu Zhi-Ang, Zhuang Yi, Wang You-Quan, Cao Jie. Shilling attack detection based on feature selection for recommendation systems. Acta Electronica Sinica, 2012, 40(8): 1687-1693(伍之昂, 庄毅, 王有权, 曹杰. 基于特征选择的推荐系统托攻击检测算法. 电子学报, 2012, 40(8): 1687-1693)
[16]  Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York: ACM, 2004. 393-402
[17]  Oestreicher-Singer G, Sundararajan A. Recommendation networks and the long tail of electronic commerce. MIS Quarterly, 2012, 36(1): 65-84
[18]  Yin H Z, Cui B, Li J, Yao J J, Chen C. Challenging the long tail recommendation. Proceedings of the VLDB Endowment, 2012, 5(9): 896-907
[19]  Li Cong, Luo Zhi-Gang. Detecting shilling attacks in recommender systems based on non-random-missing mechanism. Acta Automatica Sinica, 2013, 39(10): 1681-1690(李聪, 骆志刚. 基于数据非随机缺失机制的推荐系统托攻击探测. 自动化学报, 2013, 39(10): 1681-1690)
[20]  Li Cong, Luo Zhi-Gang, Shi Jin-Long. An unsupervised algorithm for detecting shilling attacks on recommender systems. Acta Automatica Sinica, 2011, 37(2): 160-167(李聪, 骆志刚, 石金龙. 一种探测推荐系统托攻击的无监督算法. 自动化学报, 2011, 37(2): 160-167)
[21]  Chirita P A, Nejdl W, Zamfir C. Preventing shilling attacks in online recommender systems. In: Proceedings of the 7th Annual ACM International Workshop on Web Information and Data Management. New York: ACM, 2005. 67-74
[22]  Burke R, Mobasher B, Williams C, Bhaumik R. Classification features for attack detection in collaborative recommender systems. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006. 542-547
[23]  Mehta B, Nejdl W. Unsupervised strategies for shilling detection and robust collaborative filtering. User Modeling and User-Adapted Interaction, 2009, 19(1-2): 65-97
[24]  Wu Z, Wu J J, Cao J, Tao D C. HySAD: a semi-supervised hybrid shilling attack detector for trustworthy product recommendation. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012. 985-993
[25]  Zipf G K. Selected studies of the principle of relative frequency in language. Language, 1932, 9(1): 89-92
[26]  Zhou Tao, Han Xiao-Pu, Yan Xiao-Yong, Yang Zi-Mo, Zhao Zhi-Dan, Wang Bing-Hong. Statistical mechanics on temporal and spatial activities of human. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 481-540(周涛, 韩筱璞, 闫小勇, 杨紫陌, 赵志丹, 汪秉宏. 人类行为时空特性的统计力学. 电子科技大学学报, 2013, 42(4): 481-540)
[27]  Lv L, Zhang Z K, Zhou T. Zipf's law leads to heaps' law: analyzing their relation in finite-size systems. PloS One, 2010, 5(12): e14139

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133