Li S Z. Markov Random Field Modeling in Image Analysis. London: Springer, 2009.
[2]
Blake A, Kohli P, Rother C. Markov Random Fields for Vision and Image Processing. Cambridge: MIT Press, 2011.
[3]
Blake A, Kohli P, Rother C [Author], Xie Zhao [Translator]. Markov Random Fields for Vision and Image Processing. Beijing: Science Press, 2014.(Blake A, Kohli P, Rother C [著], 谢昭 [译]. Markov随机场在视觉和图像处理中的应用. 北京: 科学出版社, 2014.)
[4]
Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239
[5]
Kolmogorov V, Zabin R. What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159
[6]
Felzenszwalb P F, Huttenlocher D P. Efficient belief propagation for early vision. International Journal of Computer Vision, 2006, 70(1): 41-54
[7]
Weiss Y, Freeman W T. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 2001, 47(2): 736-744
[8]
Murphy K P, Weiss Y, Jordan M I. Loopy belief propagation for approximate inference: an empirical study. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1999. 467-475
[9]
Wainwright M J, Jaakkola T S, Willsky A S. Map estimation via agreement on trees: message-passing and linear programming. IEEE Transactions on Information Theory, 2005, 51(11): 3697-3717
[10]
Kolmogorov V. Convergent tree-reweighted message passing for energy minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1568-1583
[11]
Kolmogorov V, Wainwright M J. On the optimality of tree-reweighted max-product message-passing. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence. 2012.
[12]
Wainwright M J, Jordan M I. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 2008, 1(1-2): 1-305
[13]
Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, Tappen M, Rother C. A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(6): 1068-1080
[14]
Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge: MIT Press, 2009.
[15]
Bishop C. Pattern Recognition and Machine Learning. New York: Springer, 2006.
[16]
Jordan M I, Ghahramani Z, Jaakkola T S, Saul L K. An introduction to variational methods for graphical models. Machine Learning, 1999, 37(2): 183-233
[17]
Lauritzen S L. Graphical Models. Oxford: Oxford University Press, 1996.
[18]
Besag J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological), 1974, 36(2): 192-236
[19]
Hammersley J M, Clifford P. Markov fields on finite graphs and lattices. 1971, unpublished. http://www.statslab.cam. ac.uk/~grg/books/hammfest/hamm-cliff.pdf
[20]
Loeliger H A. An introduction to factor graphs. IEEE Signal Processing Magazine, 2004, 21(1): 28-41
[21]
Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 2001, 47(2): 498-519
[22]
Li Y P, Huttenlocher D P. Learning for stereo vision using the structured support vector machine. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
[23]
Tsochantaridis I, Hofmann T, Joachims T, Altun Y. Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the 21st International Conference on Machine Learning. New York: ACM, 2004. 104
[24]
Yang L, Meer P, Foran D J. Multiple class segmentation using a unified framework over mean-shift patches. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
[25]
Pantofaru C, Schmid C, Hebert M. Object recognition by integrating multiple image segmentations. In: Proceedings of the 10th European Conference on Computer Vision, Computer Vision-ECCV 2008. Marseille, France: Springer, 2008. 481-494
[26]
Russell B C, Freeman W T, Efros A A, Sivic J, Zisserman A. Using multiple segmentations to discover objects and their extent in image collections. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 1605-1614
[27]
Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619
[28]
Torralba A, Murphy K P, Freeman W T. Sharing features: efficient boosting procedures for multiclass object detection. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004). Washington D.C., USA: IEEE, 2004. II-762-II-769
[29]
Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV 2001). Vancouver, BC: IEEE, 2001. 105-112
[30]
Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645
[31]
Maji S, Malik J. Object detection using a max-margin Hough transform. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). Miami, FL: IEEE, 2009. 1038-1045
[32]
Larlus D, Jurie F. Combining appearance models and Markov random fields for category level object segmentation. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-7
[33]
Hoiem D, Efros A A, Hebert M. Closing the loop in scene interpretation. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
[34]
Li C C, Kowdle A, Saxena A, Chen T. Towards holistic scene understanding: feedback enabled cascaded classification models. In: Proceedings of the 2010 Advances in Neural Information Processing Systems. 2010. 1351-1359
[35]
Gould S, Gao T S, Koller D. Region-based segmentation and object detection. In: Proceeding of the 2009 Advances in Neural Information Processing Systems. 2009. 655-663
[36]
Wojek C, Schiele B. A dynamic conditional random field model for joint labeling of object and scene classes. In: Proceedings of the 10th European Conference on Computer Vision, Computer Vision-ECCV 2008. Marseille, France: Springer, 2008. 733-747
[37]
Everingham M, Van Gool L, Williams C K I, Winn J, Zisserman A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303-338
[38]
Yao J, Fidler S, Urtasun R. Describing the scene as a whole: joint object detection, scene classification and semantic segmentation. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2012. 702-709
[39]
Sturgess P, Alahari K, Ladicky L, Torr P H S. Combining appearance and structure from motion features for road scene understanding. In: Proceedings of the 2009 British Machine Vision Association (BMVC 2009).
[40]
Roig G, Boix X, Ben Shitrit H, Fua P. Conditional random fields for multi-camera object detection. In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona: IEEE, 2011. 563-570
[41]
Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, Tappen M, Rother C. A comparative study of energy minimization methods for Markov random fields. In: Proceedings of the 9th European Conference on Computer Vision, Computer Vision-ECCV 2006. Graz, Austria: Springer, 2006. 16-29
[42]
Greig D M, Porteous B T, Seheult A H. Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society. Series B (Methodological), 1989, 51(2): 271-279
[43]
Tappen M F, Freeman W T. Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. In: Proceedings of the 9th IEEE International Conference on Computer Vision, 2003. Nice, France: IEEE, 2003. 900-906
[44]
Woodford O J, Torr P H S, Reid I D, Fitzgibbon A W. Global stereo reconstruction under second order smoothness priors. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
[45]
Vicente S, Kolmogorov V, Rother C. Graph cut based image segmentation with connectivity priors. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
[46]
Nowozin S, Lampert C H. Global connectivity potentials for random field models. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2009). Miami, FL: IEEE, 2009. 818-825
[47]
Bleyer M, Rother C, Kohli P, Scharstein D, Sinha S. Object stereo ---joint stereo matching and object segmentation. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2011. 3081-3088
[48]
Lempitsky V, Kohli P, Rother C, Sharp T. Image segmentation with a bounding box prior. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto: IEEE, 2009. 277-284
[49]
Kohli P, Kumar M P, Torr P H S. P3 & beyond: move making algorithms for solving higher order functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1645-1656
[50]
Kohli P, Kumar M P, Torr P H S. P3 & beyond: solving energies with higher order cliques. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
[51]
Kohli P, Ladicky L, Torr P H S. Robust higher order potentials for enforcing label consistency. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
[52]
Kohli P, Ladicky L, Torr P H S. Robust higher order potentials for enforcing label consistency. International Journal of Computer Vision, 2009, 82(3): 302-324
[53]
Ladicky L, Russell C, Kohli P, Torr P H S. Associative hierarchical random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1056-1077
[54]
Ladicky L, Russell C, Kohli P, Torr P H S. Associative hierarchical CRFs for object class image segmentation. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto: IEEE, 2009. 739-746
[55]
Rother C, Kohli P, Feng W, Jia J Y. Minimizing sparse higher order energy functions of discrete variables. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2009). Miami, FL: IEEE, 2009. 1382-1389
[56]
Komodakis N, Paragios N. Beyond pairwise energies: efficient optimization for higher-order MRFs. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). Miami, FL: IEEE, 2009. 2985-2992
[57]
Boix X, Gonfaus J M, van de Weijer J, Bagdanov A D, Serrat J, González J. Harmony potentials. International Journal of Computer Vision, 2012, 96(1): 83-102
[58]
Gonfaus J M, Boix X, Van de Weijer J, Bagdanov A D, Serrat J, Gonzalez J. Harmony potentials for joint classification and segmentation. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 3280-3287
[59]
Ladicky L, Russell C, Kohli P, Torr P H S. Graph cut based inference with co-occurrence statistics. In: Proceedings of the 11th European Conference on Computer Vision, Computer Vision-ECCV 2010. Heraklion, Crete, Greece: Springer, 2010. 239-253
[60]
Ladicky L, Russell C, Kohli P, Torr P H S. Inference methods for CRFs with co-occurrence statistics. International Journal of Computer Vision, 2013, 103(2): 213-225
[61]
Werner T. High-arity interactions, polyhedral relaxations, and cutting plane algorithm for soft constraint optimisation (MAP-MRF). In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
[62]
Lim Y, Jung K, Kohli P. Energy minimization under constraints on label counts. In: Proceedings of the 11th European Conference on Computer Vision, Computer Vision-ECCV 2010. Heraklion, Crete, Greece: Springer, 2010. 535-551
[63]
Delong A, Osokin A, Isack H N, Boykov Y. Fast approximate energy minimization with label costs. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 2173-2180
[64]
Delong A, Osokin A, Isack H N, Boykov Y. Fast approximate energy minimization with label costs. International Journal of Computer Vision, 2012, 96(1): 1-27
[65]
Shekhovtsov, Kohli P, Rother C. Curvature prior for mrf-based segmentation and shape inpainting. In: Proceedings of the Joint 34th DAGM and 36th OAGM, Pattern Recognition, Lecture Notes in Computer Science Volume 7476. Berlin Heidelberg: Springer, 2012. 41-51
[66]
Woodford O, Torr P, Reid I, Fitzgibbon A. Global stereo reconstruction under second-order smoothness priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2115-2128
[67]
Silberman N, Hoiem D, Kohli P, Fergus R. Indoor segmentation and support inference from RGBD images. In: Proceedings of the 12th European Conference on Computer Vision, Computer Vision-ECCV 2012. Florence, Italy: Springer, 2012. 746-760
[68]
Ladicky L, Sturgess P, Russell C, Sengupta S, Bastanlar Y, Clocksin W, Torr P H S. Joint optimization for object class segmentation and dense stereo reconstruction. International Journal of Computer Vision, 2012, 100(2): 122-133
[69]
Kim B S, Sun M, Kohli P, Savarese S. Relating things and stuff by high-order potential modeling. In: Proceedings of the 2012 Computer Vision-ECCV. Workshops and Demonstrations. Berlin, Heidelberg: Springer, 2012. 293-304
[70]
Sun M, Kim B S, Kohli P, Savarese S. Relating things and stuff via object property interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1370-1383
[71]
Ladicky L, Sturgess P, Alahari K, Russell C, Torr P H S. What, where and how many? Combining object detectors and CRFs. In: Proceedings of the 11th European Conference on Computer Vision, Computer Vision-ECCV 2010. Heraklion, Crete, Greece: Springer, 2010. 424-437
[72]
Brostow G J, Shotton J, Fauqueur J, Cipolla R. Segmentation and recognition using structure from motion point clouds. In: Proceedings of the 10th European Conference on Computer Vision, Computer Vision-ECCV 2008. Marseille, France: Springer, 2008. 44-57
[73]
Floros G, Leibe B. Joint 2d-3d temporally consistent semantic segmentation of street scenes. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2012. 2823-2830
[74]
Shotton J, Winn J, Rother C, Criminisi A. Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. International Journal of Computer Vision, 2009, 81(1): 2-23
[75]
Shotton J, Winn J, Rother C, Criminisi A. Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Proceedings of the 9th European Conference on Computer Vision, Computer Vision-ECCV 2006. Graz, Austria: Springer, 2006. 1-15
[76]
Chris R, L'ubor L, Pushmeet K, Philip HS T. Exact and approximate inference in associative hierarchical networks using graph cuts. arXiv preprint arXiv: 1203.3512, 2012.
[77]
Russell C, Ladicky L, Kohli P, Torr P H S. Exact and approximate inference in associative hierarchical networks using graph cuts. In: UAI. AUAI Press, 2010. 501-508
[78]
Kohli P, Kumar M P. Energy minimization for linear envelope MRFs. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 1863-1870
[79]
Gould S. Max-margin learning for lower linear envelope potentials in binary Markov random fields. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11). Omnipress, 2011. 193-200
[80]
Lempitsky V, Rother C, Blake A. LogCut-efficient graph cut optimization for Markov random fields. In: Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV 2007). Rio de Janeiro: IEEE, 2007. 1-8
[81]
Lempitsky V, Rother C, Roth S, Blake A. Fusion moves for Markov random field optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1392-1405
[82]
Werner T. Revisiting the linear programming relaxation approach to gibbs energy minimization and weighted constraint satisfaction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1474-1488
[83]
Kolmogorov V, Rother C. Minimizing nonsubmodular functions with graph cuts ---a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(7): 1274-1279
[84]
Boros E, Hammer P L. Pseudo-boolean optimization. Discrete Applied Mathematics, 2002, 123(1-3): 155-225
[85]
Boros E, Hammer P L, Tavares G. Preprocessing of Unconstrained Quadratic Binary Optimization. Technical Report RRR 10-2006, RUTCOR, 2006.
[86]
Rother C, Kolmogorov V, Lempitsky V, Szummer M. Optimizing binary MRFs via extended roof duality. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
[87]
Rosenberg I G. Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d'Etudes de Recherche Opérationnelle, 1975, 17: 71-74
[88]
Ishikawa H. Higher-order clique reduction in binary graph cut. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). Miami, FL: IEEE, 2009. 2993-3000
[89]
Ishikawa H. Transformation of general binary MRF minimization to the first-order case. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(6): 1234-1249
[90]
Freedman D, Drineas P. Energy minimization via graph cuts: settling what is possible. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005). San Diego, CA, USA: IEEE, 2005. 939-946
[91]
Gallagher A C, Batra D, Parikh D. Inference for order reduction in Markov random fields. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2011. 1857-1864
[92]
Fix A, Gruber A, Boros E, Zabih R. A graph cut algorithm for higher-order Markov random fields. In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona: IEEE, 2011. 1020-1027
[93]
Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo: Morgan Kaufmann, 1988.
[94]
Lan X Y, Roth S, Huttenlocher D, Black M J. Efficient belief propagation with learned higher-order Markov random fields. In: Proceedings of the 9th European Conference on Computer Vision, Computer Vision-ECCV 2006. Graz, Austria: Springer, 2006. 269-282
[95]
Potetz B. Efficient belief propagation for vision using linear constraint nodes. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
[96]
Potetz B, Lee T S. Efficient belief propagation for higher-order cliques using linear constraint nodes. Computer Vision and Image Understanding, 2008, 112(1): 39-54
[97]
Tarlow D, Givoni I E, Zemel R S. Hop-map: efficient message passing with high order potentials. In: Proceedings of the 13th Conference on Artificial Intelligence and Statistics. 2010. 812-819
[98]
McAuley J J, Caetano T S. Faster algorithms for max-product message-passing. The Journal of Machine Learning Research, 2011, 12: 1349-1388
[99]
Felzenszwalb P F, McAuley J J. Fast inference with min-sum matrix product. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2549-2554
[100]
Komodakis N, Tziritas G, Paragios N. Fast, approximately optimal solutions for single and dynamic MRFs. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
[101]
Bertsekas D P. Nonlinear Programming (2nd Edition). Belmont, Mass: Athena Scientific, 1999.
[102]
Vazirani V V. Approximation Algorithms. Berlin, Heidelberg: Springer, 2001.
[103]
Kovalevsky V A, Koval V K. A diffusion algorithm for decreasing energy of max-sum labeling problem. Glushkov Institute of Cybernetics, Kiev, USSR, 1975.
[104]
Werner T. A linear programming approach to max-sum problem: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(7): 1165-1179
[105]
Komodakis N, Paragios N, Tziritas G. MRF optimization via dual decomposition: message-passing revisited. In: Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV 2007). Rio de Janeiro: IEEE, 2007. 1-8
[106]
Komodakis N, Paragios N, Tziritas G. MRF energy minimization and beyond via dual decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 531-552
[107]
Swoboda P, Savchynskyy B, Kappes J H, Schn?rr C. Partial optimality by pruning for map-inference with general graphical models. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR'14. Washington D.C., USA: IEEE Computer Society, 2014. 1170-1177
[108]
Komodakis N, Paragios N. Beyond loose Lp-relaxations: optimizing MRFs by repairing cycles. In: Proceedings of the 10th European Conference on Computer Vision, Computer Vision-ECCV 2008. Marseille, France: Springer, 2008. 806-820
[109]
Kumar M P, Torr P H S. Efficiently solving convex relaxations for map estimation. In: Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008. 680-687
[110]
Sontag D, Jaakkola Y S. New outer bounds on the marginal polytope. In: Proceedings of the 2007 Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2007. 1393-1400
[111]
Sontag D, Meltzer T, Globerson A, Jaakkola T S, Weiss Y. Tightening LP relaxations for MAP using message passing. In: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence. 2012.
[112]
Andres B, Kappes J H, K?the U, Schn?rr C, Hamprecht F A. An empirical comparison of inference algorithms for graphical models with higher order factors using openGM. In: Proceedings of the 32nd DAGM Symposium, Pattern Recognition. Darmstadt, Germany: Springer, 2010. 353-362
[113]
Kappes J H, Andres B, Hamprecht F A, Schnorr C, Nowozin S, Batra D, Kim S, Kausler B X, Lellmann J, Komodakis N, Rother C. A comparative study of modern inference techniques for discrete energy minimization problems. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, OR: IEEE, 2013. 1328-1335
[114]
Andres B, Beier T, Kappes J H. Opengm: A C++ library for discrete graphical models. arXiv Preprint arXiv: 1206. 0111, 2012.
[115]
Scharstein D, Chris P. Learning conditional random fields for stereo. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
[116]
Taskar B, Guestrin C, Roller D. Max-margin Markov networks. Advances in Neural Information Processing Systems, 2004, 16: 25
[117]
Finley T, Joachims T. Training structural SVMs when exact inference is intractable. In: Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008. 304-311