In Parkinson's disease (PD), misfolded and aggregated α-synuclein protein accumulates in degenerating midbrain dopaminergic neurons. The amino acid alanine-76 in α-synuclein and phosphorylation at serine-87 and serine-129 are thought to regulate its aggregation and toxicity. However, their exact contributions to α-synuclein membrane association are less clear. We found that α-synuclein is indeed phosphorylated in fission yeast and budding yeast, the two models that we employed for assessing α-synuclein aggregation and membrane association properties, respectively. Surprisingly, blocking serine phosphorylation (S87A, S129A, and S87A/S129A) or mimicking it (S87D, S129D) altered α-synuclein aggregation in fission yeast. Either blocking or mimicking this phosphorylation increased endomembrane association in fission yeast, but only mimicking it decreased plasma membrane association in budding yeast. Polar substitution mutations of alanine-76 (A76E and A76R) decreased α-synuclein membrane association in budding yeast and decreased aggregation in fission yeast. These yeast studies extend our understanding of serine phosphorylation and alanine-76 contributions to α-synuclein aggregation and are the first to detail their impact on α-synuclein's plasma membrane and endomembrane association. 1. Introduction The α-synucleinopathies are a group of neurodegenerative diseases that include Parkinson’s disease, dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and Lewy body dysphagia [1–4]. Each disease is characterized by neuronal death and accumulation of α-synuclein and several other proteins in cytoplasmic inclusions called Lewy bodies [5]. Of these, PD is the most prevalent disorder, afflicting over 4 million people worldwide [6]. While whether the aggregation of α-synuclein is neurotoxic or a protective cellular response is still being resolved, α-synuclein is intimately linked to pathogenesis as Lewy bodies are found in both sporadic and familial PD, and three point mutations (A53T, A30P, and E46K) within the α-synuclein gene itself cause PD [7–9]. Duplication or triplication of the α-synuclein locus also results in PD onset, further implicating α-synuclein in PD pathogenesis [10, 11]. Even sporadic PD is linked to polymorphisms in the α-synuclein gene that potentially increase protein production [12]. α-Synuclein is a short, highly flexible protein found throughout the brain and localized to presynaptic terminals of dopaminergic neurons [13–15]. Two biochemical properties of α-synuclein most clearly linked to PD pathology are intracellular
References
[1]
M. G. Spillantini, R. A. Crowther, R. Jakes, M. Hasegawa, and M. Goedert, “α-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 6469–6473, 1998.
[2]
K. Wakabayashi, Y. Toyoshima, K. Awamori et al., “Restricted occurrence of Lewy bodies in the dorsal vagal nucleus in a patient with late-onset parkinsonism,” Journal of the Neurological Sciences, vol. 165, no. 2, pp. 188–191, 1999.
[3]
D. J. Burn and E. Jaros, “Multiple system atrophy: cellular and molecular pathology,” Journal of Clinical Pathology, vol. 54, no. 6, pp. 419–426, 2001.
[4]
J. L. Heidebrink, “Is dementia with Lewy bodies the second most common cause of dementia?” Journal of Geriatric Psychiatry and Neurology, vol. 15, no. 4, pp. 182–187, 2002.
[5]
M. Goedert, “Alpha-synuclein and neurodegenerative diseases,” Nature Reviews Neuroscience, vol. 2, no. 7, pp. 492–501, 2001.
[6]
E. R. Dorsey, R. Constantinescu, J. P. Thompson et al., “Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030,” Neurology, vol. 68, no. 5, pp. 384–386, 2007.
[7]
M. H. Polymeropoulos, C. Lavedan, E. Leroy et al., “Mutation in the α-synuclein gene identified in families with Parkinson's disease,” Science, vol. 276, no. 5321, pp. 2045–2047, 1997.
[8]
R. Krüger, W. Kuhn, K. L. Leenders et al., “Familial parkinsonism with synuclein pathology: clinical and PET studies of A30P mutation carriers,” Neurology, vol. 56, no. 10, pp. 1355–1362, 2001.
[9]
J. J. Zarranz, J. Alegre, J. C. Gómez-Esteban et al., “The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia,” Annals of Neurology, vol. 55, no. 2, pp. 164–173, 2004.
[10]
A. B. Singleton, M. Farrer, J. Johnson et al., “α-synuclein locus triplication causes Parkinson's disease,” Science, vol. 302, no. 5646, p. 841, 2003.
[11]
M. C. Chartier-Harlin, J. Kachergus, C. Roumier et al., “α-synuclein locus duplication as a cause of familial Parkinson's disease,” The Lancet, vol. 364, no. 9440, pp. 1167–1169, 2004.
[12]
D. M. Maraganore, M. de Andrade, A. Elbaz et al., “Collaborative analysis of α-synuclein gene promoter variability and Parkinson disease,” Journal of the American Medical Association, vol. 296, no. 6, pp. 661–670, 2006.
[13]
K. Ueda, H. Fukushima, E. Masliah et al., “Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 11282–11286, 1993.
[14]
J. M. George, “The synucleins,” Genome Biology, vol. 3, no. 1, article 3002, 2002.
[15]
D. D. Murphy, S. M. Rueter, J. Q. Trojanowski, and V. M. Y. Lee, “Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons,” Journal of Neuroscience, vol. 20, no. 9, pp. 3214–3220, 2000.
[16]
K. A. Jellinger, “Formation and development of Lewy pathology: a critical update,” Journal of Neurology, vol. 256, no. 3, pp. S270–S279, 2009.
[17]
K. Beyer, “Mechanistic aspects of Parkinson's disease: α-synuclein and the biomembrane,” Cell Biochemistry and Biophysics, vol. 47, no. 2, pp. 285–299, 2007.
[18]
H. Shimura, M. G. Schlossmacher, N. Hattori et al., “Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease,” Science, vol. 293, no. 5528, pp. 263–269, 2001.
[19]
B. I. Giasson, I. V. J. Murray, J. Q. Trojanowski, and V. M. Y. Lee, “A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly,” Journal of Biological Chemistry, vol. 276, no. 4, pp. 2380–2386, 2001.
[20]
R. Hodara, E. H. Norris, B. I. Giasson et al., “Functional consequences of α-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation,” Journal of Biological Chemistry, vol. 279, no. 46, pp. 47746–47753, 2004.
[21]
M. Okochi, J. Walter, A. Koyama et al., “Constitutive phosphorylation of the Parkinson's disease associated α-synuclein,” Journal of Biological Chemistry, vol. 275, no. 1, pp. 390–397, 2000.
[22]
H. Fujiwara, M. Hasegawa, N. Dohmae et al., “α-synuclein is phosphorylated in synucleinopathy lesions,” Nature Cell Biology, vol. 4, no. 2, pp. 160–164, 2002.
[23]
F. Chiti, M. Stefani, N. Taddel, G. Ramponi, and C. M. Dobson, “Rationalization of the effects of mutations on peptide and protein aggregation rates,” Nature, vol. 424, no. 6950, pp. 805–808, 2003.
[24]
H. J. Koo, H. J. Lee, and H. Im, “Sequence determinants regulating fibrillation of human α-synuclein,” Biochemical and Biophysical Research Communications, vol. 368, no. 3, pp. 772–778, 2008.
[25]
K. E. Paleologou, A. Oueslati, G. Shakked et al., “Phosphorylation at S87 is enhanced in synucleinopathies, inhibits α-synuclein oligomerization, and influences synuclein-membrane interactions,” Journal of Neuroscience, vol. 30, no. 9, pp. 3184–3198, 2010.
[26]
W. W. Smith, R. L. Margolis, X. Li et al., “α-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells,” Journal of Neuroscience, vol. 25, no. 23, pp. 5544–5552, 2005.
[27]
L. Chen and M. B. Feany, “α-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease,” Nature Neuroscience, vol. 8, no. 5, pp. 657–663, 2005.
[28]
O. S. Gorbatyuk, S. Li, L. F. Sullivan et al., “The phosphorylation state of Ser-129 in human α-synuclein determines neurodegeneration in a rat model of Parkinson disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 763–768, 2008.
[29]
S. A. da Silveira, B. L. Schneider, C. Cifuentes-Diaz et al., “Phosphorylation does not prompt, nor prevent, the formation of α-synuclein toxic species in a rat model of Parkinson's disease,” Human Molecular Genetics, vol. 18, no. 5, pp. 872–887, 2009.
[30]
N. R. McFarland, Z. Fan, K. Xu et al., “α-synuclein S129 phosphorylation mutants do not alter nigrostriatal toxicity in a rat model of parkinson disease,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 5, pp. 515–524, 2009.
[31]
V. N. Uversky and A. L. Fink, “Amino acid determinants of α-synuclein aggregation: putting together pieces of the puzzle,” FEBS Letters, vol. 522, no. 1-3, pp. 9–13, 2002.
[32]
A. M. Bodles, D. J. S. Guthrie, B. Greer, and G. Brent Irvine, “Identification of the region of non-Aβ component (NAC) of Alzheimer's disease amyloid responsible for its aggregation and toxicity,” Journal of Neurochemistry, vol. 78, no. 2, pp. 384–395, 2001.
[33]
W. Li, N. West, E. Colla et al., “Aggregation promoting C-terminal truncation of α-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 6, pp. 2162–2167, 2005.
[34]
P. H. Weinreb, W. Zhen, A. W. Poon, K. A. Conway, and P. T. Lansbury Jr., “NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded,” Biochemistry, vol. 35, no. 43, pp. 13709–13715, 1996.
[35]
H. Han, P. H. Weinreb, and P. T. Lansbury Jr., “The core Alzheimer's peptide NAC forms amyloid fibrils which seed and are seeded by beta-amyloid: is NAC a common trigger or target in neurodegenerative disease?” Chemistry and Biology, vol. 2, no. 3, pp. 163–169, 1995.
[36]
A. Iwai, M. Yoshimoto, E. Masliah, and T. Saitoh, “Non-Aβ component of Alzheimer's disease amyloid (NAC) is amyloidogenic,” Biochemistry, vol. 34, no. 32, pp. 10139–10145, 1995.
[37]
E. A. Waxman, J. R. Mazzulli, and B. I. Giasson, “Characterization of hydrophobic residue requirements for α-synuclein fibrillization,” Biochemistry, vol. 48, no. 40, pp. 9427–9436, 2009.
[38]
T. F. Outeiro and S. Lindquist, “Yeast cells provide insight into alpha-synuclein biology and pathobiology,” Science, vol. 302, no. 5651, pp. 1772–1775, 2003.
[39]
S. Willingham, T. F. Outeiro, M. J. DeVit, S. L. Lindquist, and P. J. Muchowski, “Yeast genes that enhance the toxicity of a mutant huntingtin fragment or α-synuclein,” Science, vol. 302, no. 5651, pp. 1769–1772, 2003.
[40]
P. Zabrocki, K. Pellens, T. Vanhelmont et al., “Characterization of α-synuclein aggregation and synergistic toxicity with protein tau in yeast,” FEBS Journal, vol. 272, no. 6, pp. 1386–1400, 2005.
[41]
N. Sharma, K. A. Brandis, S. K. Herrera et al., “α-synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress,” Journal of Molecular Neuroscience, vol. 28, no. 2, pp. 161–178, 2006.
[42]
C. Dixon, N. Mathias, R. M. Zweig, D. A. Davis, and D. S. Gross, “α-synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast,” Genetics, vol. 170, no. 1, pp. 47–59, 2005.
[43]
J. H. Soper, S. Roy, A. Stieber et al., “α-synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 19, no. 3, pp. 1093–1103, 2008.
[44]
K. Vamvaca, M. J. Volles, and P. T. Lansbury Jr., “The first N-terminal amino acids of α-synuclein are essential for α-helical structure formation in vitro and membrane binding in yeast,” Journal of Molecular Biology, vol. 389, no. 2, pp. 413–424, 2009.
[45]
K. A. Brandis, I. F. Holmes, S. J. England, N. Sharma, L. Kukreja, and S. K. DebBurman, “α-synuclein fission yeast model: concentration-dependent aggregation without plasma membrane localization or toxicity,” Journal of Molecular Neuroscience, vol. 28, no. 2, pp. 179–192, 2006.
[46]
E. Yeger-Lotem, L. Riva, L. J. Su et al., “Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity,” Nature Genetics, vol. 41, no. 3, pp. 316–323, 2009.
[47]
M. Takahashi, H. Kanuka, H. Fujiwara et al., “Phosphorylation of α-synuclein characteristic of synucleinopathy lesions is recapitulated in α-synuclein transgenic Drosophila,” Neuroscience Letters, vol. 336, no. 3, pp. 155–158, 2003.
[48]
M. Yamada, T. Iwatsubo, Y. Mizuno, and H. Mochizuki, “Overexpression of α-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of α-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease,” Journal of Neurochemistry, vol. 91, no. 2, pp. 451–461, 2004.
[49]
E. A. Waxman and B. I. Giasson, “Specificity and regulation of casein kinase-mediated phosphorylation of α-synuclein,” Journal of Neuropathology and Experimental Neurology, vol. 67, no. 5, pp. 402–416, 2008.
[50]
A. N. Pronin, A. J. Morris, A. Surguchov, and J. L. Benovic, “Synucleins are a novel class of substrates for G protein-coupled receptor kinases,” Journal of Biological Chemistry, vol. 275, no. 34, pp. 26515–26522, 2000.
[51]
H. Qing, W. Wong, E. G. McGeer, and P. L. McGeer, “Lrrk2 phosphorylates alpha synuclein at serine 129: Parkinson disease implications,” Biochemical and Biophysical Research Communications, vol. 387, no. 1, pp. 149–152, 2009.
[52]
K. J. Inglis, D. Chereau, E. F. Brigham et al., “Polo-like kinase 2 (PLK2) phosphorylates α-synuclein at serine 129 in central nervous system,” Journal of Biological Chemistry, vol. 284, no. 5, pp. 2598–2602, 2009.
[53]
M. K. Mbefo, K. E. Paleologou, A. Boucharaba et al., “Phosphorylation of synucleins by members of the polo-like kinase family,” Journal of Biological Chemistry, vol. 285, no. 4, pp. 2807–2822, 2010.
[54]
M. Periquet, T. Fulga, L. Myllykangas, M. G. Schlossmacher, and M. B. Feany, “Aggregated α-synuclein mediates dopaminergic neurotoxicity in vivo,” Journal of Neuroscience, vol. 27, no. 12, pp. 3338–3346, 2007.
[55]
L. Chen, M. Periquet, XU. Wang et al., “Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation,” Journal of Clinical Investigation, vol. 119, no. 11, pp. 3257–3265, 2009.
[56]
P. T. Lansbury Jr., “Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3342–3344, 1999.
[57]
M. S. Goldberg and P. T. Lansbury Jr., “Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson's disease?” Nature Cell Biology, vol. 2, no. 7, pp. E115–E119, 2000.
[58]
N. Gosavi, H. J. Lee, J. S. Lee, S. Patel, and S. J. Lee, “Golgi fragmentation occurs in the cells with prefibrillar α-synuclein aggregates and precedes the formation of fibrillar inclusion,” Journal of Biological Chemistry, vol. 277, no. 50, pp. 48984–48992, 2002.
[59]
P. K. Auluck, G. Caraveo, and S. Lindquist, “α-synuclein: membrane interactions and toxicity in parkinson's disease,” Annual Review of Cell and Developmental Biology, vol. 26, pp. 211–233, 2010.
[60]
T. R. Flower, C. Clark-Dixon, C. Metoyer et al., “YGR198w (YPP1) targets A30P α-synuclein to the vacuole for degradation,” Journal of Cell Biology, vol. 177, no. 6, pp. 1091–1104, 2007.