Macdonald B C T, White I, strm M E et al. Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River, eastern Australia[J]. Applied Geochemistry, 2007, 22: 2695-2705.
[2]
Hinwood A, Horwitz P, Rogan R. Human exposure to metals in groundwater affected by acid sulfate soil disturbance[J]. Arch Environ Contam Toxicol, 2008, 55: 538-545.
[3]
Lin C, Mcconchie D, Bush R T et al. Characteristics of some heavy metals in acid sulfate topsoils, Eastern Australia[J]. Pedosphere, 2001, 11(1): 31-37.
[4]
Lin C, Melville M D. Controls of soluble Al in experimental acid sulfate conditions and acid sulfate soils[J]. Pedosphere,1997, 7(2): 97-102.
[5]
Burton E D, Bush R T, Sullivan L A et al. Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil[J]. Chemical Geology, 2008, 253: 64-73.
[6]
Welch S A, Christy A G, Isaacson L et al. Mineralogical control of rare earth elements in acid sulfate soils[J]. Geochimica et Cosmochimica Acta, 2009, 73: 44-64.
[7]
Morgan B, Rate A W, Burton E D. Trace element reactivity in FeS-rich estuarine sediments: Influence of formation environment and acid sulfate soil drainage[J]. Science of the Total Environment, 2012, 438: 463-476.
Ljung K, Maley F, Cook A et al. Acid sulfate soils and human health—a millennium ecosystem assessment[J]. Environment International, 2009, 35: 1234-1242.
[10]
Ljung K, Maley F, Cooka A. Canal estate development in an acid sulfate soil implications for human metal exposure[J]. Landscape and Urban Planning, 2010, 97: 123-131.
Grger J, Proske U, Hanebuth T J J et al. Cycling of trace metals and rare earth elements (REE) in acid sulfate soils in the plain of reeds, vietnam[J]. Chemical Geology, 2011, 288: 162-177.
[13]
Lin C. Acid sulfate soils in Australia: characteristics, problem and management[J]. Pedosphere, 1999, 9: 289-298.
[14]
Nyberg M E, sterholm P, Nystrand M I. Impact of acid sulfate soils on the geochemistry of rivers in south-western Finland[J]. Environment Earth Science, 2012, 66: 157-168.
[15]
Smith J, van Oploo P, Marston H et al. Spatial distribution and management of total actual acidity in an acid sulfate soil environment, McLeods Creek, northeastern NSW, Australia[J]. Catena, 2003, 51: 61-79.
[16]
Lin C. Could acid sulfate soils be a potential environmental threat to estuarine ecosystems on the south China coast?[J]. Pedosphere, 1999, 9(1): 53-59.
[17]
Dent D L, Pons L J. A world perspective on acid sulphate soils[J]. Geoderma, 1995, 67: 263-276.
[18]
IUSS Working Group WRB. World reference base for soil resources 2006[M]. Rome, Italy: World Soil Resources Reports No. 103. FAO, 2006.
[19]
sterholm P, strm M. Spatial trends and losses of major and trace elements in agricultural acid sulphate soils distributed in the artificially drained Rintala area, W. Finland[J]. Applied Geochemistry, 2002, 17(9): 1209-1218.
[20]
Andriesse W, van Mensvoort M E F. Acid sulfate soils: distribution and extent[A]. Lal R.Encyclopedia of Soil Science[M]: Boca Raton: CRC Press, 2006. 14-19.
[21]
Toivonen J, sterholm P. Characterization of acid sulfate soils and assessing their impact on a humic boreal lake[J]. Journal of Geochemical Exploration, 2011, 110: 107-117.
[22]
Breemen N V. Soil forming processes in acid sulphate soils [A]. Drost H. Acid sulphate soil[M]. Wageningen, The Netherlands: International Institute for land Reclamation and Improvement, 1973, 18: 66-130.
[23]
Hartikainen H, Yli-Halla M. Oxidation-induced leaching of sulphate and cation from acid sulphate soils[J]. Water, Air, and Soil Pollution, 1986, 27: 1-3.
Claff S R, Sullivan L A, Burton E D et al. Partitioning of metals in a degraded acid sulfate soil landscape, influence of tidal[J]. Chemosphere, 2011, 85: 1220-1226.
[28]
Claff S R, Burton E D, Sullivan L A et al. Metal partitioning dynamics during the oxidation and acidification of sulfidic soil[J]. Chemical Geology, 2011, 286: 146-157.
[29]
Bush R T, Mcgrath R, Sullivan L A. Occurrence of marcasite in an organic-rich Holocene estuarine mud[J]. Soil Research, 2003, 42(6): 617-621.
[30]
Smith J, Melville M D. Iron monosulfide formation and oxidation in drain-bottom sediments of an acid sulfate soil environment[J]. Applied Geochemistry, 2004, 19: 1837-1853.
[31]
Luther G W. Pyrite synthesis via polysulfide compounds[J]. Geochimica et Cosmochimica Acta, 1991, 55(10): 2839-2849.
[32]
Bigham J M, Nordstrom D K. Iron and aluminum hydroxysulfates from acid sulfate waters[J]. Reviews in Mineralogy and Geochemistry, 2000, 40: 351-403.
[33]
Johnston S G, Keene A F, Bush R T et al. Iron geochemical zonation in a tidally inundated acid sulfate soil wetland[J]. Chemical Geology, 2011, 280: 257-270.
[34]
Acero P, Ayora C, Torrento C et al. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite[J]. Geochimica et Cosmochimica Acta, 2006, 70: 4130-4139.
[35]
Madden M E E, Madden A S, Rimstidt J D et al. Jarosite dissolution rates and nanoscale mineralogy[J]. Geochimica et Cosmochimica Acta, 2012, 91: 306-321.
[36]
Claff S R, Sullivan L A, Burton E D et al. A sequential extraction procedure for acid sulfate soils, partitioning of iron[J]. Geoderma, 2010, 155: 224-230.
[37]
Lin C. Analytical methods for environmental risk assessment of acid sulfate soils: A review[J]. Pedosphere, 2001, 11(4): 301-310.
Zopfi J, Bottcher M E, Jrgensen B B. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area of central Chile[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 827-843.
[40]
Fanning D S, Rabenhorst M C, Balduff D M et al. An acid sulfate perspective on landscape seascape soil mineralogy in the U.S. Mid-Atlantic region[J]. Geoderma, 2010, 154: 457-464.
[41]
Wilson B P. Elevations of sulfurous layers in acid sulfate soils: What do they indicate about sea levels during the Holocene in eastern Australia?[J]. Gatena, 2005, 62: 45-46.
[42]
Keene A F, Johnston S G, Bush R T et al. Effects of hyper-enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland[J]. Biogeochemistry, 2011, 103: 263-279.
[43]
Berner R A. Sedimentary pyrite formation[J]. American Journal of Science, 1970, 268: 1-23.
[44]
Wolthers M, Van Der Gaast S J, Rickard D. The structure of disordered mackinawite[J]. American Mineralogist, 2003, 88: 2007-2015.
[45]
Rickard D, Griffith A, Oldroyd A et al. The composition of nanoparticulate mackinawite, tetragonal iron(II) monosulfide[J]. Chemical Geology, 2006, 235(3-4): 286-298.
[46]
Rickard D. Kinetics of Fe-S precipitation: Part 1. Competing reaction mechanisms[J]. Geochimica et CosmochimicaActa, 1995, 59(21): 4367-4379.
[47]
Richard D, Luther G W. Chemistry of iron sulfides[J]. Chemical Reviews, 2007, 107(2): 514-562.
Morse J W, Rickard D. Chemical dynamics of sedimentary acid volatile sulfide[J]. Environmental Science & Technology, 2004, 38: 131A-136A.
[50]
Morse J W, Cornwell J C. Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments[J]. Marine Chemistry, 1987, 22: 55-69.
[51]
Butle I B, Bttcher M E, Rickard D et al. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records[J]. Earth and Planetary Science Letters, 2004, 228(3-4): 495-509.
[52]
Rickard D. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125℃: the rate equation[J]. Geochimica et Cosmochimica Acta, 1997, 61(1): 115-134.
[53]
Rickard D, Luther G W. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125℃: the mechanism[J]. Geochimica et Cosmochimica Acta, 1997, 61(1): 135-147.
[54]
Boman A, strm M, Frojdo S. Sulfur dynamics in boreal acid sulfate soils rich in metastable iron sulfide-The role of artificial drainage[J]. Chemical Geology, 2008, 255: 68-77.
[55]
Nelson V G. Formation of acid sulfate soil and its implications to brackishwater ponds[J]. Aquacultural Engineering, 1995, 44(4): 297-316.
[56]
Boman A, Frojdo S, Backlund K et al. Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfidemain[J]. Geochimica et Cosmochimica Acta, 2010, 74: 1268-1281.
[57]
Silverman M P. Mechanism of bacterial pyrite oxidation[J]. Journal of Bacteriology, 1967, 94(4): 1046-1051.
[58]
Ward N J, Sullivan L A, Fyfe D M et al. The process of sulfide oxidation in some acid sulfate soil materials[J]. Australian Journal of Soil Research, 2004, 42(4): 449-458.
[59]
Le T M H, Collins R N, Waite T D. Influence of metal ions and pH on the hydraulic properties of potential acid sulfate soils[J]. Journal of Hydrology, 2008, 356: 261-270.
Burton E D, Bush R T, Sullivan L A. Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes[J]. Environmental Science & Technology, 2006, 40(3): 888-893.
[69]
Bush R T. Micromorphology and mineralogy of iron sulfides in acid sulphate soils: Their formation and behaviour[D]. New South Wales: PhD dissertation University of New South Wales, 2001.
[70]
Bloomfield C. Acidification and Ochre formation in Pyritic soil [A]. Dost H.Proceedings of the international symposium on acid sulphate soil[C]: Wageningen, The Netherlands: ILRI Publication, 1973, 2: 40-51.
[71]
Evangelou V P, Zhang Y L. A review: Pyrite oxidation mechanisms and acid mine drainage prevention[J]. Critical Reviews in Environmental Science and Technology, 1995, 25(2): 141-199.
[72]
Smith A M L, Hudson-Edwards K A, Dubbin W E et al. Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: Insights from batch experiments and computational modelling[J]. Geochimica et Cosmochimica Acta, 2006, 3(70): 608-621.
[73]
Lin C, Islam M M, Bush R T et al. Acid release from an acid sulfate soil sample under successive extractions with different extractants[J]. Pedosphere, 2000, 10(3): 221-228.
[74]
Joukainen S, Yli-Halla M. Environmental impacts and acid loads from deep sulfidic layer of two well-drained acid sulfate soils in western Finland[J]. Agriculture, Ecosystems & Environment, 2003, 95: 297-309.
strm M. Mobility of Al P and alkali and alkaline earth metals in acid sulphate soils in Finland[J]. Science of the Total Environment, 1998, 215: 19-30.
[81]
Golez N V, Kyuma K. Influence of pyrite oxidation and soil acidification on some essential nutrient elements[J]. Aquacultural Engineering, 1997, 16: 107-124.
[82]
Moore P A, Patrick W H. Aluminium, boron and molybdenum availability and uptake by rice in acid sulfate soils[J]. Plant and Soil, 1991, 136: 171-181.
[83]
Faltmarsch R M, strm M E, Vuori K M. Environmental risks of metals mobilised from acid sulphate soils in Finland: a literature review[J]. Boreal Environment Research, 2008, 13: 444-456.
[84]
Russell D J, Helmke S A. Impacts of acid leachate on water quality and fisheries resources of a coastal creek in northern Australia[J]. Marine and Freshwater Research, 2002, 53: 19-33.
[85]
Stephens F J, Ingram M. Two cases of fish mortality in low pH, aluminium rich water[J]. Journal of Fish Diseases, 2006, 29: 765-770.
[86]
Morgan B, Rate A W, Burton E D et al. Enrichment and fractionation of rare earth elements in FeS- and organic-rich estuarine sediments receiving acid sulfate soil drainage[J]. Chemical Geology, 2012, 308-309: 60-73.
[87]
Kang D, Seo Y, Lee B et al. Identification and crop performance of acid sulfate soil-tolerant rice varieties[J]. The Korean Society of Crop Science, 2010, 13(2): 75-81.
Rosicky M, Sullivan L, Slavich P et al. Factors contributing to the acid sulfate soil scalding process in the coastal flood plains of New South Wales, Australia[J]. Soil Research, 2004, 42: 587-594.
[90]
Faltmarsch R, sterholm P, Greger M et al. Metal concentrations in oats (Avena sativa L.) grown on acid sulphate soils[J]. Agricultural and Food Science, 2009, 18: 45-56.
[91]
Fltmarsch R, sterholm P, Gunnar J. Chemical composition of cabbage (Brassica Oleracea L. var. capitata) grown on acid sulfate soils[J]. Journal of Plant Nutrition and Soil Science, 2010, 173: 423-433.
[92]
Russell D J, Preston K M, Mayer R J. Recovery of fish and crustacean communities during remediation of tidal wetlands affected by leachate from acid sulfate soils in north-eastern Australia[J]. Wetlands Ecology and Management, 2011, 19: 89-108.
[93]
Nordstrom D L. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals[A]. Kittrick J A, Fanning D S, Hosner L R. Acid sulfate weathering[M]. Madison: Soil Science Society of America Special Publication, 1982. 37-56.
[94]
Sohlenius G, born I. Geochemistry and partitioning of trace metals in acid sulphate soils in Sweden and Finland before and after sulphide oxidation[J]. Geoderma, 2004, 122(2-4): 167-175.
[95]
Breemen N V. Genesis, morphology, and classification of acid sulfate soils in coastal plains[A]. Kittrick J A, Fanning D S, Hosner L R. Acid sulfate weathering[M]. Madison: Soil Science Society of America Special Publication, 1982, 95-108.
[96]
Sullivan L A, Bush R T. Iron precipitate accumulations associated with waterways in drained coastal acid sulfate landscapes of eastern Australia[J]. Marine and Freshwater Research, 2004, 55(7): 727-736.
[97]
Burton E D, Bush R T, Sullivan L A. Sedimentary iron geochemistry in acidic waterways associated with coastal lowland acid sulfate soils[J]. Geochimica et Cosmochimica Acta, 2006, 70: 5455-5468.
[98]
Burton E D, Bush R T, Sullivan L A et al. Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands[J]. Geochimica et Cosmochimica Acta, 2007, 71: 4456-4473.
[99]
Backlund K, Boman A, Frjd S. An analytical procedure determination of sulphur species and isotopes in boreal acid sulphate soils sediments[J]. Agricultural and Food Science, 2005, 14: 70-82.
[100]
Hicks W, Bowman G R F. Environmental impacts of acid sulfate soils near Cairns, QLD[J]. CSIRO Land Water, 1999, 8.
[101]
Powell B, Martens M. A review of acid sulfate soil impacts, actions and policies that impact on water quality in the Great Barrier Reef catchments, including a case study on remediation at East Trinity[J]. Marine Pollution Bulletin, 2005, 51: 149-164.
[102]
Lin C, Lancaster G, Sullivan L A et al. Actual acidity and its assessment in acid sulfate soils [A]. Slavich P. Proceedings of workshop on assessment and remediation of acid sulfate soils[C]. Lismore, Australia: Acid Sulfate Soil Management Advisory Committee, 2000.
[103]
Lin C, Melville M D, Valetine N. Characteristics of soluble and exchangeable acidity in an extremely acidified acid sulfate soil[J]. Pedosphere, 1999, 9(4): 323-330.
[104]
Lin C, O'Brien K, Lancaster G et al. An improved analytical procedure for determination of total actual acidity in acid sulfate soils[J]. Science of The Total Environment, 2000, 252: 57-61.
Sherman R E, Fahey T J, Battles J J. Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest[J]. Journal of Ecology, 2000, 88(1): 165-178.
[107]
Dittmar T, Hertkorn N, Kattner G et al. Mangroves, a major source of dissolved organic carbon to the oceans[J]. Global Biogeochemical Cycles, 2006, 20(1): B1012.
[108]
林鹏. 中国红树林研究进展[J]. 厦门大学学报, 2001, 40(2): 592-603.
[109]
Zhou Y W, Zhao B, Peng Y S et al. Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments[J]. Marine Pollution Bulletin, 2010, 60: 1319-1324.
[110]
Nath B, Birch G, Chaudhuri P. Trace metal biogeochemistry in mangrove ecosystems: A comparative assessment of acidified (by acid sulfate soils) and non-acidified sites[J]. Science of The Total Environment, 2013: 463-464, 667-674.
[111]
Minh L Q, Tuong T P, van Mensvoort M E F et al. Contamination of surface water as affected by land use in acid sulfate soils in the Mekong River Delta, Vietnam[J]. Agriculture, Ecosystems & Environment, 1997, 61: 19-27.
[112]
Minh L Q, Tuong T P, van Mensvoort M E F et al. Aluminum contaminant transport by surface runoff and bypass flow from an acid sulphate soil[J]. Agricultural Water Management, 2002, 56: 179-191.
[113]
Johnston S G, Keene A F, Burton E D et al. Arsenic mobilization in a seawater inundated acid sulfate soil[J]. Environmental Science and Technology, 2010, 44(6): 1968-1976.
[114]
Hinwood A L, Horwitz P, Appleyard S et al. Acid sulphate soil disturbance and metals in groundwater: Implications for human exposure through home grown produce[J]. Environmental Pollution, 2006, 143: 100-105.
[115]
Ferreira T, Otero X, Vidal-Torrado P et al. Redox processes in mangrove soils under in relation to different environmental conditions[J]. Soil Science Society of America, 2007, 71(2): 484-491.
[116]
Marchand C, Allenbach M, Lallier-Vergès E. Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia)[J]. Geoderma, 2011, 160(3-4): 444-456.
[117]
Amaral V, Cabral H N, Bishop M J. Resistance among wild invertebrate populations to recurrent estuarine acidification[J]. Estuarine, Coastal and Shelf Science, 2011, 93(4): 460-467.
[118]
Amaral V, Cabral H N, Bishop M J. Prior exposure influences the behavioural avoidance by an intertidal gastropod, Bembicium auratum, of acidified waters[J]. Estuarine, Coastal and Shelf Science, 2013, 136(1): 82-90.
[119]
strm M. Partitioning of transition metals in oxidized and reduced zones of sulphide-bearing fine-grained sediments[J]. Applied Geochemistry, 1998, 13(5): 607-617.
[120]
strm M. Effect of widespread severely acidic soils on spatial features and abundance of trace elements in streams[J]. Journal of Geochemical Exploration, 2001, 73: 181-191.
[121]
Roos M, strm M. Hydrogeochemistry of rivers in an acid sulphate soil hotspot area in western Finland[J]. Agricultural and Food Science, 2005, 14: 24-33.
[122]
strm M, Nystrand M, Gustafsson J P et al. Lanthanoid behaviour in an acidic landscape[J]. Geochimica et Cosmochimica Acta, 2010, 74: 829-845.