全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

酸性硫酸盐土的形成、特性及其生态环境效应

DOI: 10.11674/zwyf.2014.0624, PP. 1534-1544

Keywords: 酸性硫酸盐土,成土过程,,,,生态效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

酸性硫酸盐土(ASS)是全球沿海周边广泛分布的土壤种类,其铁、硫元素的生物地球化学过程在全球物质循环过程中具有重要地位,但ASS也是最低质的土壤类型之一。ASS成土母质常形成于富含有机质、海水浸泡的江口、海湾等热带亚热带滨海环境,经异化细菌还原海水硫酸盐而形成四方硫铁矿(FeS)、硫复铁矿(Fe3S4)、黄铁矿(FeS2)等多种还原态Fe-S矿物沉淀物。ASS成土母质形成过程中的生物活动、化学反应相当活跃,还原态Fe-S矿物沉淀物将环境中游离的金属、稀土元素以及痕量元素固定下来,实现海水净化、金属富集作用。因自然条件变化或者人为干扰等影响,ASS成土母质中的还原态Fe-S矿物被氧化而形成ASS。富含还原性硫化铁矿物的成土母质经一系列复杂反应,被氧化形成氢氧化铁、酸、硫酸盐等最终产物,同时伴生多种铁、硫生物中间产物,以及强酸土壤环境。强酸环境下,铝、镉、锰、砷、铬等有毒金属的活性大幅提高,而磷、钾、锌、硼等必需营养元素含量显著降低,严重危害实地动植物生长。另一方面,ASS中的酸和活化的重金属随雨水、径流、毛细管等途径进入河流、地下水,威胁周边生态安全。目前,ASS的形成机理已基本被揭示,以及ASS发育过程中的生态环境效应已基本清晰。然而,我国早期学者主要关注ASS的铁、铝、硫含量水平,以及ASS发育农田的改良应用,对于ASS的发育过程、生态功能及风险等尚未形成系统的认识。近年来,随着耕地面积不断萎缩,开发改良ASS等低产田块是提高我国粮食产量水平的重要措施。因此,为了合理开发利用ASS,尽量降低ASS的生态风险,亟需对ASS的形成机理、发育过程、土壤特性、生态环境效应进行全面综述。本文首先对ASS的形成条件与过程进行综述,进一步梳理了ASS中硫的演变和铁的地球化学过程,并着重阐述了ASS的酸性特点,最后对ASS的生态环境效应进行了讨论。结合我国研究现状,展望了进一步研究ASS的主要问题,旨在为科学开发和利用酸性硫酸盐土提供参考。

References

[1]  Macdonald B C T, White I, strm M E et al. Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River, eastern Australia[J]. Applied Geochemistry, 2007, 22: 2695-2705.
[2]  Hinwood A, Horwitz P, Rogan R. Human exposure to metals in groundwater affected by acid sulfate soil disturbance[J]. Arch Environ Contam Toxicol, 2008, 55: 538-545.
[3]  Lin C, Mcconchie D, Bush R T et al. Characteristics of some heavy metals in acid sulfate topsoils, Eastern Australia[J]. Pedosphere, 2001, 11(1): 31-37.
[4]  Lin C, Melville M D. Controls of soluble Al in experimental acid sulfate conditions and acid sulfate soils[J]. Pedosphere,1997, 7(2): 97-102.
[5]  Burton E D, Bush R T, Sullivan L A et al. Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil[J]. Chemical Geology, 2008, 253: 64-73.
[6]  Welch S A, Christy A G, Isaacson L et al. Mineralogical control of rare earth elements in acid sulfate soils[J]. Geochimica et Cosmochimica Acta, 2009, 73: 44-64.
[7]  Morgan B, Rate A W, Burton E D. Trace element reactivity in FeS-rich estuarine sediments: Influence of formation environment and acid sulfate soil drainage[J]. Science of the Total Environment, 2012, 438: 463-476.
[8]  章家恩. 酸性硫酸盐土的景观诊断及时空分布与演替模式[J]. 土壤与环境, 1999, 8(2): 144-147.
[9]  Ljung K, Maley F, Cook A et al. Acid sulfate soils and human health—a millennium ecosystem assessment[J]. Environment International, 2009, 35: 1234-1242.
[10]  Ljung K, Maley F, Cooka A. Canal estate development in an acid sulfate soil implications for human metal exposure[J]. Landscape and Urban Planning, 2010, 97: 123-131.
[11]  章家恩. 酸性硫酸盐土的酸害暴发机制及其环境影响[J]. 热带地理, 1999, 19(2): 137-141.
[12]  Grger J, Proske U, Hanebuth T J J et al. Cycling of trace metals and rare earth elements (REE) in acid sulfate soils in the plain of reeds, vietnam[J]. Chemical Geology, 2011, 288: 162-177.
[13]  Lin C. Acid sulfate soils in Australia: characteristics, problem and management[J]. Pedosphere, 1999, 9: 289-298.
[14]  Nyberg M E, sterholm P, Nystrand M I. Impact of acid sulfate soils on the geochemistry of rivers in south-western Finland[J]. Environment Earth Science, 2012, 66: 157-168.
[15]  Smith J, van Oploo P, Marston H et al. Spatial distribution and management of total actual acidity in an acid sulfate soil environment, McLeods Creek, northeastern NSW, Australia[J]. Catena, 2003, 51: 61-79.
[16]  Lin C. Could acid sulfate soils be a potential environmental threat to estuarine ecosystems on the south China coast?[J]. Pedosphere, 1999, 9(1): 53-59.
[17]  Dent D L, Pons L J. A world perspective on acid sulphate soils[J]. Geoderma, 1995, 67: 263-276.
[18]  IUSS Working Group WRB. World reference base for soil resources 2006[M]. Rome, Italy: World Soil Resources Reports No. 103. FAO, 2006.
[19]  sterholm P, strm M. Spatial trends and losses of major and trace elements in agricultural acid sulphate soils distributed in the artificially drained Rintala area, W. Finland[J]. Applied Geochemistry, 2002, 17(9): 1209-1218.
[20]  Andriesse W, van Mensvoort M E F. Acid sulfate soils: distribution and extent[A]. Lal R.Encyclopedia of Soil Science[M]: Boca Raton: CRC Press, 2006. 14-19.
[21]  Toivonen J, sterholm P. Characterization of acid sulfate soils and assessing their impact on a humic boreal lake[J]. Journal of Geochemical Exploration, 2011, 110: 107-117.
[22]  Breemen N V. Soil forming processes in acid sulphate soils [A]. Drost H. Acid sulphate soil[M]. Wageningen, The Netherlands: International Institute for land Reclamation and Improvement, 1973, 18: 66-130.
[23]  Hartikainen H, Yli-Halla M. Oxidation-induced leaching of sulphate and cation from acid sulphate soils[J]. Water, Air, and Soil Pollution, 1986, 27: 1-3.
[24]  刘振乾, 王建武, 骆世明, 等. 酸性硫酸盐土中硫形态转化过程的水分制约作用[J]. 生态科学, 2002, 21(1): 68-71.
[25]  王建武, 骆世明. 酸性硫酸盐土中硫的形态含量分布和酸化特征[J]. 应用生态学报, 1999, 10(5): 583-588.
[26]  钟继洪. 酸性硫酸盐土中的硫及其形态演变探讨[J]. 生态学杂志, 2003, 22(5): 98-101.
[27]  Claff S R, Sullivan L A, Burton E D et al. Partitioning of metals in a degraded acid sulfate soil landscape, influence of tidal[J]. Chemosphere, 2011, 85: 1220-1226.
[28]  Claff S R, Burton E D, Sullivan L A et al. Metal partitioning dynamics during the oxidation and acidification of sulfidic soil[J]. Chemical Geology, 2011, 286: 146-157.
[29]  Bush R T, Mcgrath R, Sullivan L A. Occurrence of marcasite in an organic-rich Holocene estuarine mud[J]. Soil Research, 2003, 42(6): 617-621.
[30]  Smith J, Melville M D. Iron monosulfide formation and oxidation in drain-bottom sediments of an acid sulfate soil environment[J]. Applied Geochemistry, 2004, 19: 1837-1853.
[31]  Luther G W. Pyrite synthesis via polysulfide compounds[J]. Geochimica et Cosmochimica Acta, 1991, 55(10): 2839-2849.
[32]  Bigham J M, Nordstrom D K. Iron and aluminum hydroxysulfates from acid sulfate waters[J]. Reviews in Mineralogy and Geochemistry, 2000, 40: 351-403.
[33]  Johnston S G, Keene A F, Bush R T et al. Iron geochemical zonation in a tidally inundated acid sulfate soil wetland[J]. Chemical Geology, 2011, 280: 257-270.
[34]  Acero P, Ayora C, Torrento C et al. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite[J]. Geochimica et Cosmochimica Acta, 2006, 70: 4130-4139.
[35]  Madden M E E, Madden A S, Rimstidt J D et al. Jarosite dissolution rates and nanoscale mineralogy[J]. Geochimica et Cosmochimica Acta, 2012, 91: 306-321.
[36]  Claff S R, Sullivan L A, Burton E D et al. A sequential extraction procedure for acid sulfate soils, partitioning of iron[J]. Geoderma, 2010, 155: 224-230.
[37]  Lin C. Analytical methods for environmental risk assessment of acid sulfate soils: A review[J]. Pedosphere, 2001, 11(4): 301-310.
[38]  章家恩, 骆世明, 王建武. 酸性硫酸土研究现状与发展趋向[J]. 热带亚热带土壤科学, 1998, 7(4): 309-313.
[39]  Zopfi J, Bottcher M E, Jrgensen B B. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area of central Chile[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 827-843.
[40]  Fanning D S, Rabenhorst M C, Balduff D M et al. An acid sulfate perspective on landscape seascape soil mineralogy in the U.S. Mid-Atlantic region[J]. Geoderma, 2010, 154: 457-464.
[41]  Wilson B P. Elevations of sulfurous layers in acid sulfate soils: What do they indicate about sea levels during the Holocene in eastern Australia?[J]. Gatena, 2005, 62: 45-46.
[42]  Keene A F, Johnston S G, Bush R T et al. Effects of hyper-enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland[J]. Biogeochemistry, 2011, 103: 263-279.
[43]  Berner R A. Sedimentary pyrite formation[J]. American Journal of Science, 1970, 268: 1-23.
[44]  Wolthers M, Van Der Gaast S J, Rickard D. The structure of disordered mackinawite[J]. American Mineralogist, 2003, 88: 2007-2015.
[45]  Rickard D, Griffith A, Oldroyd A et al. The composition of nanoparticulate mackinawite, tetragonal iron(II) monosulfide[J]. Chemical Geology, 2006, 235(3-4): 286-298.
[46]  Rickard D. Kinetics of Fe-S precipitation: Part 1. Competing reaction mechanisms[J]. Geochimica et CosmochimicaActa, 1995, 59(21): 4367-4379.
[47]  Richard D, Luther G W. Chemistry of iron sulfides[J]. Chemical Reviews, 2007, 107(2): 514-562.
[48]  Rickard D, Morse J W. Acid volatile sulfide (AVS)[J]. Marine Chemistry, 2005, 97(3-4): 141-197.
[49]  Morse J W, Rickard D. Chemical dynamics of sedimentary acid volatile sulfide[J]. Environmental Science & Technology, 2004, 38: 131A-136A.
[50]  Morse J W, Cornwell J C. Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments[J]. Marine Chemistry, 1987, 22: 55-69.
[51]  Butle I B, Bttcher M E, Rickard D et al. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records[J]. Earth and Planetary Science Letters, 2004, 228(3-4): 495-509.
[52]  Rickard D. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125℃: the rate equation[J]. Geochimica et Cosmochimica Acta, 1997, 61(1): 115-134.
[53]  Rickard D, Luther G W. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125℃: the mechanism[J]. Geochimica et Cosmochimica Acta, 1997, 61(1): 135-147.
[54]  Boman A, strm M, Frojdo S. Sulfur dynamics in boreal acid sulfate soils rich in metastable iron sulfide-The role of artificial drainage[J]. Chemical Geology, 2008, 255: 68-77.
[55]  Nelson V G. Formation of acid sulfate soil and its implications to brackishwater ponds[J]. Aquacultural Engineering, 1995, 44(4): 297-316.
[56]  Boman A, Frojdo S, Backlund K et al. Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfidemain[J]. Geochimica et Cosmochimica Acta, 2010, 74: 1268-1281.
[57]  Silverman M P. Mechanism of bacterial pyrite oxidation[J]. Journal of Bacteriology, 1967, 94(4): 1046-1051.
[58]  Ward N J, Sullivan L A, Fyfe D M et al. The process of sulfide oxidation in some acid sulfate soil materials[J]. Australian Journal of Soil Research, 2004, 42(4): 449-458.
[59]  Le T M H, Collins R N, Waite T D. Influence of metal ions and pH on the hydraulic properties of potential acid sulfate soils[J]. Journal of Hydrology, 2008, 356: 261-270.
[60]  杨萍如, 何金海, 刘腾辉. 红树林及其土壤[J]. 自然资源学报, 1987, 2(1): 32-37.
[61]  Lin C, Melville M D. Mangrove soil: a potential contamination source to estuarine ecosystems of Australia[J]. Wetlands, 1992, 11: 68-75.
[62]  林慧娜, 傅娇艳, 吴浩, 等. 中国主要红树林湿地沉积物中硫的分布特征及影响因素[J]. 海洋科学, 2009, 33(12): 79-82.
[63]  龚子同, 张效朴. 中国的红树林与酸性硫酸盐土[J]. 土壤学报, 1994, 31(1): 86-93.
[64]  黄宇年, 陆发憙. 广东咸酸田土壤硫化学研究[J]. 土壤学报, 1988, 25(2): 101-109.
[65]  廖家隆, 姚素平, 丁海. 滨海红树林泥炭沉积物中硫的赋存特点及其控制因素[J]. 高校地质学报, 2008, 14(4): 620-630.
[66]  张汝国. 珠江口红树林硫的累积和循环研究[J]. 热带亚热带土壤科学, 1996, 5(2): 67-73.
[67]  桑树勋, 刘焕杰, 施健. 海南岛红树林泥炭中硫及其成因研究[J]. 煤田地质与勘探, 1993, 21(1): 12-17.
[68]  Burton E D, Bush R T, Sullivan L A. Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes[J]. Environmental Science & Technology, 2006, 40(3): 888-893.
[69]  Bush R T. Micromorphology and mineralogy of iron sulfides in acid sulphate soils: Their formation and behaviour[D]. New South Wales: PhD dissertation University of New South Wales, 2001.
[70]  Bloomfield C. Acidification and Ochre formation in Pyritic soil [A]. Dost H.Proceedings of the international symposium on acid sulphate soil[C]: Wageningen, The Netherlands: ILRI Publication, 1973, 2: 40-51.
[71]  Evangelou V P, Zhang Y L. A review: Pyrite oxidation mechanisms and acid mine drainage prevention[J]. Critical Reviews in Environmental Science and Technology, 1995, 25(2): 141-199.
[72]  Smith A M L, Hudson-Edwards K A, Dubbin W E et al. Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: Insights from batch experiments and computational modelling[J]. Geochimica et Cosmochimica Acta, 2006, 3(70): 608-621.
[73]  Lin C, Islam M M, Bush R T et al. Acid release from an acid sulfate soil sample under successive extractions with different extractants[J]. Pedosphere, 2000, 10(3): 221-228.
[74]  Joukainen S, Yli-Halla M. Environmental impacts and acid loads from deep sulfidic layer of two well-drained acid sulfate soils in western Finland[J]. Agriculture, Ecosystems & Environment, 2003, 95: 297-309.
[75]  刘兆辉, 王遵亲. 我国滨海酸性硫酸盐土壤中几种不同形态的酸[J]. 土壤学报, 1992, 29(4): 401-407.
[76]  刘振乾, 王建武, 骆世明, 等. 酸性硫酸盐土酸消长的水动力机制研究[J]. 土壤学报, 2002, 39(5): 726-734.
[77]  李金培. 有机无机改良剂对酸性硫酸盐土化学动力学与水稻生长的影响[J]. 华南农业大学学报, 1993, 14(1): 16-23.
[78]  刘兆辉, 王遵亲. 我国酸性硫酸盐土壤中铁锰形态转化及迁移[J]. 土壤学报, 1994, 31(4): 376-384.
[79]  王建武, 骆世明, 冯远娇. 酸性硫酸盐土中铝的形态[J]. 应用生态学报, 2000, 11(5): 735-740.
[80]  strm M. Mobility of Al P and alkali and alkaline earth metals in acid sulphate soils in Finland[J]. Science of the Total Environment, 1998, 215: 19-30.
[81]  Golez N V, Kyuma K. Influence of pyrite oxidation and soil acidification on some essential nutrient elements[J]. Aquacultural Engineering, 1997, 16: 107-124.
[82]  Moore P A, Patrick W H. Aluminium, boron and molybdenum availability and uptake by rice in acid sulfate soils[J]. Plant and Soil, 1991, 136: 171-181.
[83]  Faltmarsch R M, strm M E, Vuori K M. Environmental risks of metals mobilised from acid sulphate soils in Finland: a literature review[J]. Boreal Environment Research, 2008, 13: 444-456.
[84]  Russell D J, Helmke S A. Impacts of acid leachate on water quality and fisheries resources of a coastal creek in northern Australia[J]. Marine and Freshwater Research, 2002, 53: 19-33.
[85]  Stephens F J, Ingram M. Two cases of fish mortality in low pH, aluminium rich water[J]. Journal of Fish Diseases, 2006, 29: 765-770.
[86]  Morgan B, Rate A W, Burton E D et al. Enrichment and fractionation of rare earth elements in FeS- and organic-rich estuarine sediments receiving acid sulfate soil drainage[J]. Chemical Geology, 2012, 308-309: 60-73.
[87]  Kang D, Seo Y, Lee B et al. Identification and crop performance of acid sulfate soil-tolerant rice varieties[J]. The Korean Society of Crop Science, 2010, 13(2): 75-81.
[88]  臧小平, 张承林, 孙光明,等. 酸性硫酸盐土壤上施用磷矿粉对水稻养分有效性的影响[J]. 植物营养与肥料学报, 2003, 9(2): 203-207.
[89]  Rosicky M, Sullivan L, Slavich P et al. Factors contributing to the acid sulfate soil scalding process in the coastal flood plains of New South Wales, Australia[J]. Soil Research, 2004, 42: 587-594.
[90]  Faltmarsch R, sterholm P, Greger M et al. Metal concentrations in oats (Avena sativa L.) grown on acid sulphate soils[J]. Agricultural and Food Science, 2009, 18: 45-56.
[91]  Fltmarsch R, sterholm P, Gunnar J. Chemical composition of cabbage (Brassica Oleracea L. var. capitata) grown on acid sulfate soils[J]. Journal of Plant Nutrition and Soil Science, 2010, 173: 423-433.
[92]  Russell D J, Preston K M, Mayer R J. Recovery of fish and crustacean communities during remediation of tidal wetlands affected by leachate from acid sulfate soils in north-eastern Australia[J]. Wetlands Ecology and Management, 2011, 19: 89-108.
[93]  Nordstrom D L. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals[A]. Kittrick J A, Fanning D S, Hosner L R. Acid sulfate weathering[M]. Madison: Soil Science Society of America Special Publication, 1982. 37-56.
[94]  Sohlenius G, born I. Geochemistry and partitioning of trace metals in acid sulphate soils in Sweden and Finland before and after sulphide oxidation[J]. Geoderma, 2004, 122(2-4): 167-175.
[95]  Breemen N V. Genesis, morphology, and classification of acid sulfate soils in coastal plains[A]. Kittrick J A, Fanning D S, Hosner L R. Acid sulfate weathering[M]. Madison: Soil Science Society of America Special Publication, 1982, 95-108.
[96]  Sullivan L A, Bush R T. Iron precipitate accumulations associated with waterways in drained coastal acid sulfate landscapes of eastern Australia[J]. Marine and Freshwater Research, 2004, 55(7): 727-736.
[97]  Burton E D, Bush R T, Sullivan L A. Sedimentary iron geochemistry in acidic waterways associated with coastal lowland acid sulfate soils[J]. Geochimica et Cosmochimica Acta, 2006, 70: 5455-5468.
[98]  Burton E D, Bush R T, Sullivan L A et al. Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands[J]. Geochimica et Cosmochimica Acta, 2007, 71: 4456-4473.
[99]  Backlund K, Boman A, Frjd S. An analytical procedure determination of sulphur species and isotopes in boreal acid sulphate soils sediments[J]. Agricultural and Food Science, 2005, 14: 70-82.
[100]  Hicks W, Bowman G R F. Environmental impacts of acid sulfate soils near Cairns, QLD[J]. CSIRO Land Water, 1999, 8.
[101]  Powell B, Martens M. A review of acid sulfate soil impacts, actions and policies that impact on water quality in the Great Barrier Reef catchments, including a case study on remediation at East Trinity[J]. Marine Pollution Bulletin, 2005, 51: 149-164.
[102]  Lin C, Lancaster G, Sullivan L A et al. Actual acidity and its assessment in acid sulfate soils [A]. Slavich P. Proceedings of workshop on assessment and remediation of acid sulfate soils[C]. Lismore, Australia: Acid Sulfate Soil Management Advisory Committee, 2000.
[103]  Lin C, Melville M D, Valetine N. Characteristics of soluble and exchangeable acidity in an extremely acidified acid sulfate soil[J]. Pedosphere, 1999, 9(4): 323-330.
[104]  Lin C, O'Brien K, Lancaster G et al. An improved analytical procedure for determination of total actual acidity in acid sulfate soils[J]. Science of The Total Environment, 2000, 252: 57-61.
[105]  林初夏, 吴志峰. 酸性硫酸盐土的酸度类型及其测定方法[J]. 生态环境, 2003, 12(4): 505-507.
[106]  Sherman R E, Fahey T J, Battles J J. Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest[J]. Journal of Ecology, 2000, 88(1): 165-178.
[107]  Dittmar T, Hertkorn N, Kattner G et al. Mangroves, a major source of dissolved organic carbon to the oceans[J]. Global Biogeochemical Cycles, 2006, 20(1): B1012.
[108]  林鹏. 中国红树林研究进展[J]. 厦门大学学报, 2001, 40(2): 592-603.
[109]  Zhou Y W, Zhao B, Peng Y S et al. Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments[J]. Marine Pollution Bulletin, 2010, 60: 1319-1324.
[110]  Nath B, Birch G, Chaudhuri P. Trace metal biogeochemistry in mangrove ecosystems: A comparative assessment of acidified (by acid sulfate soils) and non-acidified sites[J]. Science of The Total Environment, 2013: 463-464, 667-674.
[111]  Minh L Q, Tuong T P, van Mensvoort M E F et al. Contamination of surface water as affected by land use in acid sulfate soils in the Mekong River Delta, Vietnam[J]. Agriculture, Ecosystems & Environment, 1997, 61: 19-27.
[112]  Minh L Q, Tuong T P, van Mensvoort M E F et al. Aluminum contaminant transport by surface runoff and bypass flow from an acid sulphate soil[J]. Agricultural Water Management, 2002, 56: 179-191.
[113]  Johnston S G, Keene A F, Burton E D et al. Arsenic mobilization in a seawater inundated acid sulfate soil[J]. Environmental Science and Technology, 2010, 44(6): 1968-1976.
[114]  Hinwood A L, Horwitz P, Appleyard S et al. Acid sulphate soil disturbance and metals in groundwater: Implications for human exposure through home grown produce[J]. Environmental Pollution, 2006, 143: 100-105.
[115]  Ferreira T, Otero X, Vidal-Torrado P et al. Redox processes in mangrove soils under in relation to different environmental conditions[J]. Soil Science Society of America, 2007, 71(2): 484-491.
[116]  Marchand C, Allenbach M, Lallier-Vergès E. Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia)[J]. Geoderma, 2011, 160(3-4): 444-456.
[117]  Amaral V, Cabral H N, Bishop M J. Resistance among wild invertebrate populations to recurrent estuarine acidification[J]. Estuarine, Coastal and Shelf Science, 2011, 93(4): 460-467.
[118]  Amaral V, Cabral H N, Bishop M J. Prior exposure influences the behavioural avoidance by an intertidal gastropod, Bembicium auratum, of acidified waters[J]. Estuarine, Coastal and Shelf Science, 2013, 136(1): 82-90.
[119]  strm M. Partitioning of transition metals in oxidized and reduced zones of sulphide-bearing fine-grained sediments[J]. Applied Geochemistry, 1998, 13(5): 607-617.
[120]  strm M. Effect of widespread severely acidic soils on spatial features and abundance of trace elements in streams[J]. Journal of Geochemical Exploration, 2001, 73: 181-191.
[121]  Roos M, strm M. Hydrogeochemistry of rivers in an acid sulphate soil hotspot area in western Finland[J]. Agricultural and Food Science, 2005, 14: 24-33.
[122]  strm M, Nystrand M, Gustafsson J P et al. Lanthanoid behaviour in an acidic landscape[J]. Geochimica et Cosmochimica Acta, 2010, 74: 829-845.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133