全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

山西矿区复垦土壤中解磷细菌的筛选及鉴定

DOI: 10.11674/zwyf.2014.0621, PP. 1505-1516

Keywords: 土地复垦,解磷菌,解磷能力,16SrDNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】矿区复垦土壤贫瘠、有效磷含量低。解磷细菌能够将有机磷和难溶性无机磷转化为可溶性磷,促进植物对磷素的利用。因此筛选和鉴定具有解磷能力的菌株,可为解决矿区生态恢复使用的微生物肥料提供菌种资源。【方法】采用平板分离法初筛菌株,得到D/d≥1.5的菌株,然后以磷酸钙为磷源,通过液体发酵试验复筛菌株,挑选出解磷率高于巨大芽孢杆菌(Bacillusmegaterium)As1.223的菌株。以磷矿粉和卵磷脂为磷源,液体发酵试验测定菌株的解磷能力及磷酸酶活性。进行菌株的生长试验以测定菌株温度适宜性、耐盐性及耐酸碱性。通过形态学、基因序列分析及脂肪酸组成分析综合进行菌株鉴定。菌落形态观察用营养琼脂平板培养基培养;菌体形态即细胞形态及其大小采用扫描电镜观察;基因序列分析采用16SrDNA序列测定,基因在线比对采用EzTaxon数据库;使用美国MIDI公司的Sherolock全自动细菌鉴定系统对菌株进行脂肪酸组成分析。【结果】利用无机磷和有机磷平板培养基,从山西省矿区复垦区土壤样品中筛选出19株解磷微生物,其中D/d≥1.5的有7株。在以磷酸钙为磷源的液体培养试验中,4株菌的解磷率高于巨大芽孢杆菌As1.223,解磷率为7.89%~12.61%,最高的为菌株Y14。4株菌对磷矿粉的解磷率为0.81%~1.21%,最高的为菌株Y14。在以卵磷脂为磷源的液体培养试验中,4株菌的解磷率与酸性磷酸酶活性分别为1.79%~3.07%和24.3~28.4U/L,均高于巨大芽孢杆菌As1.223;碱性磷酸酶活性为11.9~50.2U/L;菌株Y14的解磷率与磷酸酶活性均最高。4株菌均有较强的环境适应能力,以Y14的适应性最强。H22、Y11和Y34与假单胞菌属(Pseudomonassp.)同源性在99%以上,Y14与泛菌属(Pantoeasp.)有99.79%的同源性;H22、Y11和Y34的细胞脂肪酸组成特征峰与假单胞菌属(Pseudomonassp.)相一致,Y14与泛菌属(Pantoeasp.)相一致;H22、Y11和Y34被鉴定为假单胞菌(Pseudomonassp.),Y14为泛菌属(Pantoeasp.)。【结论】分离、筛选到4株高效解磷菌,对于磷酸钙和卵磷脂的解磷率均高于巨大芽孢杆菌As1.223。4株菌分别隶属于假单胞菌属(Pseudomonassp.)和泛菌属(Pantoeasp.)。菌株Y14无机磷与有机磷平板的D/d值分别为3.28与1.59,降解磷酸钙、磷矿粉、卵磷脂的解磷率分别为12.61%、1.21%、3.07%,酸性与碱性磷酸酶活性分别为28.4U/L和50.2U/L,均为4株菌里最高的,且环境适应能力最强,生长温度为20~60℃,能耐受pH4~11的酸碱梯度和2%~7%的盐分梯度,Y14被鉴定为泛菌属(Pantoeasp.)。4株菌均具有良好的解磷能力及较强的环境适应能力,可望进一步研发成为微生物肥料生产菌种。综合D/d值、解磷率、磷酸酶活性和生长试验,本试验最终确定适合山西矿区复垦农田推广的高效解磷菌菌株为Y14。

References

[1]  白中科. 山西矿区土地复垦科学研究与试验示范十八年回顾[J]. 山西农业大学学报, 2004, 24(4): 313-317.
[2]  李建华, 郜春花, 卢朝东. 山西省矿区土地复垦的初步探讨[J]. 山西农业科学, 2008, 36(3): 69-72.
[3]  钱奎梅, 王丽萍, 李江. 矿区复垦土壤的微生物活性变化[J]. 生态与农村环境学报, 2011, 27(6): 59-63.
[4]  王亚艺, 李松龄, 蔡晓剑, 郝玉兰. 青海解磷菌菌株的分离筛选[J]. 河北农业科学, 2012, 16(2): 62-64.
[5]  NY412-2000. 磷细菌肥料[S].
[6]  沈萍, 范秀容, 李广武. 微生物学实验(第三版)[M]. 北京: 高等教育出版社, 1999.
[7]  Andersen S M, Johnsen K, Srensen J et al. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(6): 1957-1964.
[8]  李振高, 骆永明, 滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008. 107-108.
[9]  杜慧平, 刘利军, 闫双堆. 微生物对矿山复垦地土壤基质的改良作用[J]. 山西农业科学, 2011, 39(1): 43-46.
[10]  Schachtman D P, Reid R J, Ayling S M. Phosphate uptake by plants from soil to cell[J]. Plant Physiology, 1998, 116(2): 447-453.
[11]  Rodríguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnology Advances, 1999, 17(4): 319-339.
[12]  Zhu F L, Qu L Y, Hong X G, Sun X Q. Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China[J]. Evidence-Based Complementary and Alternative Medicine, 2011.
[13]  卢朝东, 郜春花, 王岗, 等.B2和B67菌株筛选及应用效果研究[J]. 中国土壤与肥料, 2007, (5): 56-59.
[14]  Vassilev N, Vassileva M. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes[J]. Applied Microbiology and Biotechnology, 2003, 61(5-6): 435-440.
[15]  Abd-Alla M H. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae[J]. Letters in Applied Microbiology, 1994, 18(5): 294-296.
[16]  Gavini F, Mergaert J, Beji A et al. Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 1989, 39(3): 337-345.
[17]  东秀珠. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
[18]  朱培淼, 杨兴明, 徐阳春, 等. 高效解磷细菌的筛选及其对玉米苗期生长的促进作用[J]. 应用生态学报, 2007, 18(1): 107-112.
[19]  贺梦醒, 高毅, 胡正雪, 等. 解磷菌株B25的筛选、 鉴定及其解磷能力[J]. 应用生态学报, 2012, 23(1): 235-239.
[20]  郝晶, 洪坚平, 刘冰, 张健. 石灰性土壤中高效解磷细菌菌株的分离、 筛选及组合[J]. 应用与环境生物学报, 2006,12(3): 404-408.
[21]  Illmer P, Schinner F. Solubilization of inorganic phosphate by microorganisms isolated from forest soils[J]. Soil Biology and Biochemistry, 1992, 24(4): 389-395.
[22]  吉蓉. 土壤解磷微生物及其解磷机制综述[J]. 甘肃农业科技, 2013, (8): 42-44.
[23]  钟传青, 黄为一. P17菌株产生磷酸酶的影响因素及其定域研究[J]. 山东建筑大学学报, 2012, 27(1): 32-35.
[24]  游银伟, 王梅, 江丽华, 等. 高效解磷菌Bacillus subtilis P-1的N离子束诱变育种[J]. 西南农业学报, 2009, (4): 1020-1022.
[25]  Sundara Raoand W V B, Sinha M K. Phosphate dissolving microorganisms in the soil and rhizosphere[J]. Indian Journal of Agricultural Sciences, 1963, 33(4): 272-278.
[26]  Elliott J M, Mathre D E, Sands D C. Identification and characterization of rhizosphere-competent bacteria of wheat[J]. Applied and Environmental Microbiology, 1987, 53(12): 2793-2799.
[27]  De Freitas J R, Banerjee M R, Germida J J. Phosphate-solubillizing rhizobactera enhance the growth and yield but not phosphorus uptake of canola(Brassica napus L.)[J]. Biology and Fertility of Soils, 1997, 24(4): 358-364.
[28]  Molla M A Z, Chowdhury A A. Microbial mineralization of organic phosphate in soil[J]. Plant and Soil, 1984, 78(3): 393-399.
[29]  Vazquez P, Holguin G, Puente M E et al. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon[J]. Biology and Fertility of Soils, 2000, 30(5-6): 460-468.
[30]  孙建光, 张燕春, 徐晶, 胡海燕. 高效固氮芽孢杆菌选育及其生物学特性研究[J]. 中国农业科学, 2009, 42(6): 2043-2051.
[31]  Mohn W W, Wilson A E, Bicho P, Moore E R. Physiological and phylogenetic diversity of bacteria growing on resin acids[J]. Systematic and Applied Microbiology, 1999, 22(1): 68-78.
[32]  Verhille S, Baida N, Dabboussi F et al. Taxonomic study of bacteria isolated from natural mineral waters: proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov[J]. Systematic and Applied Microbiology, 1999, 22(1): 45-58.
[33]  Popp A, Cleenwerck I, Iversen C et al. Pantoea gaviniae sp. nov. and Pantoea calida sp. nov., isolated from infant formula and an infant formula production environment[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(12): 2786-2792.
[34]  黄翠丽, 王敏, 成晓杰, 等. 一株产共轭亚油酸瘤胃细菌Streptococcus infantarius RB111的筛选与鉴定[J]. 微生物学通报, 2011, 38(1): 78-84.
[35]  Burr S E, Gobeli S, Kuhnert P et al. Pseudomonas chlororaphis subsp. piscium subsp. nov., isolated from freshwater fish[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(12): 2753-2757.
[36]  Cámara B, Strmpl C, Verbarg S et al. Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(5): 923-931.
[37]  Brady C L, Cleenwerck I, van der Westhuizen L et al. Pantoea rodasii sp. nov., Pantoea rwandensis sp. nov. and Pantoea wallisii sp. nov., isolated from Eucalyptus[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(7): 1457-1464.
[38]  Holt J G. Bergey’s manual of systematic bacteriology (1st edition)[M]. Baltimore: Williams & Wilkins, 1984-1989.
[39]  Altomare C, Norvell W A, Bjrkman T, Harmand G E. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22[J]. Applied and Environmental Microbiology, 1999, 65(7): 2926-2933.
[40]  Chabot R, Antoun H, Cescas M P. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. Phaseoli[J]. Plant and Soil, 1996, 184(2): 311-321.
[41]  Jha A, Sharma D, Saxena J. Effect of single and dual phosphate-solubilizing bacterial strain inoculations on overall growth of mung bean plants[J]. Archives of Agronomy and Soil Science, 2012, 58(9): 967-981.
[42]  Igual J M, Valerde A, Cervantes E et al. Phosphate-solubilizing bacteria as inoculants for agriculture: Use of updated molecular techniques in their study[J]. Agronomy for Sustainable Development, 2001, 21: 561-568.
[43]  Illmer P, Schinner F. Solubilization of inorganic calcium phosphates-solubilization mechanisms[J]. Soil Biology and Biochemistry, 1995, 27: 257-263.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133