Andersen S M, Johnsen K, Srensen J et al. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(6): 1957-1964.
Schachtman D P, Reid R J, Ayling S M. Phosphate uptake by plants from soil to cell[J]. Plant Physiology, 1998, 116(2): 447-453.
[11]
Rodríguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnology Advances, 1999, 17(4): 319-339.
[12]
Zhu F L, Qu L Y, Hong X G, Sun X Q. Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China[J]. Evidence-Based Complementary and Alternative Medicine, 2011.
Vassilev N, Vassileva M. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes[J]. Applied Microbiology and Biotechnology, 2003, 61(5-6): 435-440.
[15]
Abd-Alla M H. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae[J]. Letters in Applied Microbiology, 1994, 18(5): 294-296.
[16]
Gavini F, Mergaert J, Beji A et al. Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 1989, 39(3): 337-345.
Illmer P, Schinner F. Solubilization of inorganic phosphate by microorganisms isolated from forest soils[J]. Soil Biology and Biochemistry, 1992, 24(4): 389-395.
Sundara Raoand W V B, Sinha M K. Phosphate dissolving microorganisms in the soil and rhizosphere[J]. Indian Journal of Agricultural Sciences, 1963, 33(4): 272-278.
[26]
Elliott J M, Mathre D E, Sands D C. Identification and characterization of rhizosphere-competent bacteria of wheat[J]. Applied and Environmental Microbiology, 1987, 53(12): 2793-2799.
[27]
De Freitas J R, Banerjee M R, Germida J J. Phosphate-solubillizing rhizobactera enhance the growth and yield but not phosphorus uptake of canola(Brassica napus L.)[J]. Biology and Fertility of Soils, 1997, 24(4): 358-364.
[28]
Molla M A Z, Chowdhury A A. Microbial mineralization of organic phosphate in soil[J]. Plant and Soil, 1984, 78(3): 393-399.
[29]
Vazquez P, Holguin G, Puente M E et al. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon[J]. Biology and Fertility of Soils, 2000, 30(5-6): 460-468.
Mohn W W, Wilson A E, Bicho P, Moore E R. Physiological and phylogenetic diversity of bacteria growing on resin acids[J]. Systematic and Applied Microbiology, 1999, 22(1): 68-78.
[32]
Verhille S, Baida N, Dabboussi F et al. Taxonomic study of bacteria isolated from natural mineral waters: proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov[J]. Systematic and Applied Microbiology, 1999, 22(1): 45-58.
[33]
Popp A, Cleenwerck I, Iversen C et al. Pantoea gaviniae sp. nov. and Pantoea calida sp. nov., isolated from infant formula and an infant formula production environment[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(12): 2786-2792.
Burr S E, Gobeli S, Kuhnert P et al. Pseudomonas chlororaphis subsp. piscium subsp. nov., isolated from freshwater fish[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(12): 2753-2757.
[36]
Cámara B, Strmpl C, Verbarg S et al. Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(5): 923-931.
[37]
Brady C L, Cleenwerck I, van der Westhuizen L et al. Pantoea rodasii sp. nov., Pantoea rwandensis sp. nov. and Pantoea wallisii sp. nov., isolated from Eucalyptus[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(7): 1457-1464.
[38]
Holt J G. Bergey’s manual of systematic bacteriology (1st edition)[M]. Baltimore: Williams & Wilkins, 1984-1989.
[39]
Altomare C, Norvell W A, Bjrkman T, Harmand G E. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22[J]. Applied and Environmental Microbiology, 1999, 65(7): 2926-2933.
[40]
Chabot R, Antoun H, Cescas M P. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. Phaseoli[J]. Plant and Soil, 1996, 184(2): 311-321.
[41]
Jha A, Sharma D, Saxena J. Effect of single and dual phosphate-solubilizing bacterial strain inoculations on overall growth of mung bean plants[J]. Archives of Agronomy and Soil Science, 2012, 58(9): 967-981.
[42]
Igual J M, Valerde A, Cervantes E et al. Phosphate-solubilizing bacteria as inoculants for agriculture: Use of updated molecular techniques in their study[J]. Agronomy for Sustainable Development, 2001, 21: 561-568.
[43]
Illmer P, Schinner F. Solubilization of inorganic calcium phosphates-solubilization mechanisms[J]. Soil Biology and Biochemistry, 1995, 27: 257-263.