Obroucheva N V, Sin'kevich I A. Aquaporins and cell growth[J]. Russia Journal of Plant Physiology, 2010, 57(2): 153-165.
[2]
Vera-Estrella R, Barkla B J, Bohnert H S, Pantoja O. Novel regulation of aquaporins during osmotic stress[J]. Plant Physiology, 2004, 135(4): 2318-2329.
[3]
Fetter K, Van Wilder V, Moshelion M et al. Interactions between plasma membrane aquaporins modulate their water channel activity[J]. The Plant Cell Online, 2004, 16(1): 215-228.
[4]
Zelazny E, Borst J W, Muylaert M et al. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization[J]. Proceedings of the National Academy of Sciences, 2007, 104(30): 12359-12364.
[5]
Temmei Y, Uchida S, Hoshino D et al. Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation[J]. FEBS Letters, 2005, 579(20): 4417-4422.
[6]
Dhonukshe P, Aniento F, Hwang I et al. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis[J]. Current Biology, 2007, 17(6): 520-527.
[7]
Paciorek T, Zazimalova E, Ruthardt N et al. Auxin inhibits endocytosis and promotes its own efflux from cells[J]. Nature, 2005, 435(7046): 1251-1256.
[8]
Guenther J F, Chanmanivone N, Galetovic M P et al. Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals[J]. The Plant Cell, 2003, 15(4): 981-991.
[9]
Gerbeau P, Amodeo G, Henzler T et al. The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH[J]. The Plant Journal, 2002, 30(1): 71-81.
[10]
Alleva K, Niemietz C M, Sutka M et al. Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations[J]. Journal of Experimental Botany, 2006, 57(3): 609-621.
[11]
Tournaire-Roux C, Sutka M, Javot H et al. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins[J]. Nature, 2003, 425(6956): 393-397.
[12]
Ye Q, Wiera B, Steudle E. A cohesion/tension mechanism explains the gating of water channels (aquaporins) in Chara internodes by high concentration[J]. Journal of Experimental Botany, 2004, 55(396): 449-461.
[13]
Henzler T, Ye Q, Steudle E. Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals[J]. Plant, Cell & Environment, 2004, 27(9): 1184-1195.
[14]
Barrieu F, Chaumont F, Chrispeels M J. High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize[J]. Plant Physiology, 1998, 117(4): 1153-1163.
[15]
Karlsson M, Johansson I, Bush M et al. An abundant TIP expressed in mature highly vacuolated cells[J]. The Plant Journal, 2000, 21(1): 83-90.
[16]
Kaldenhoff R, Fischer M. Functional aquaporin diversity in plants[J]. Biochimica et Biophysica Acta-Biomembranes, 2006, 1758(8): 1134-1141.
[17]
Azad A K, Sawa Y, Ishikawa T et al. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals[J]. Plant Cell Physiol, 2004, 45(5): 608-617.
[18]
Bots M, Feron R, Uehlein N et al. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development[J]. Journal of Experimental Botany, 2005, 56(409): 113-121.
[19]
Bots M, Vergeldt F, Wolters-Arts M et al. Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco[J]. Plant Physiology, 2005, 137(3): 1049-1056.
[20]
Fleurat-Lessard P, Michonneau P, Maeshima M et al. The distribution of aquaporin subtypes (PIP1, PIP2 and γ-TIP) is tissue dependent in soybean (Glycine max) root nodules[J]. Ann Bot-London, 2005, 96(3): 457-460.
[21]
Fleurat-Lessard P, Frangne N, Maeshima M et al. Increased expression of vacuolar aquaporin and H+-ATPase related to motor cell function in Mimosa pudica L.[J]. Plant Physiology, 1997, 114(3): 827-834.
[22]
Maurel C. Aquaporins and water permeability of plant membranes[J]. Annual Review of Plant Biology, 1997, 48(1): 399-429.
[23]
Hoh B, Hinz G, Jeong B K et al. Protein storage vacuoles form de novo during pea cotyledon development[J]. Journal of Cell Science, 1995, 108(1): 299-310.
[24]
Prudent S, Marty F, Charbonnier M. The yeast osmo sensitive mutant fps1Δtransformed by the cauliflower BobTIP1;1 aquaporin withstand a hypo-osmotic shock[J]. FEBS Letters, 2005, 579(18): 3872-3880.
[25]
Clarkson D T, Carvajal M, Henzler T et al. Root hydraulic conductance: diural aquaporin expression and the effects of nutrient stress[J]. Journal of Experimental Botany, 2000, 51(342): 61-70.
[26]
Wang Y H, Garvin D F, Kochian L Y. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition[J]. Plant Physiology, 2001, 127: 345-359.
[27]
Liu L H, Ludewig U, Gassert B et al. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis[J]. Plant Physiology, 2003, 133(3): 1220-1228.
[28]
Aroca R, Porcel R, Ruiz-Lozano J M. Regulation of root water uptake under abiotic stress conditions[J]. Journal of Experimental Botany, 2012, 63: 43-57.
[29]
Wang L L, Chen A P, Zhong N Q et al.The Thellungiella salsuginea tonoplast aquaporin TsTIP1; 2 functions in protection against multiple abiotic stresses[J]. Plant and Cell Physiology, 2014, 55(1): 148-161.
[30]
Alexandersson E, Sjvall-Larsen S et al. Whole gene family expression and drought stress regulation of aquaporins[J]. Plant Molecular Biology, 2005, 59(3): 469-484.
[31]
Sarda X, Tousch D, Ferrare K et al. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells[J]. The Plant Journal, 1997, 12(5): 1103-1111.
[32]
Cochard H, Venisse J S, Barigah T S et al. Putative role of aquaporins in variable hydraulic conductance of leaves in response to light[J]. Plant Physiology, 2007, 143(1): 122-133.
[33]
Lo Gullo M A, Nardini A, Trifilò P, Salleo S. Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees[J]. Tree Physiology, 2005, 25(4): 505-512.
[34]
Cochard H, Venisse J S, Barigah T S et al.Putative tole of aquaporin in variable hydraulic conductance of leaves in response to light[J]. Plant Physiology, 2007, 143(1): 122-133.
[35]
Kim Y X, Steudle E. Light and turgor affect the water permeability (aquaporins) of parenchyma cells in the midrib of leaves of Zea mays[J]. Journal of Experimental Botany, 2007, 58(15-16): 4119-4129.
[36]
Kim Y X, Steudle E. Gating of aquaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays[J]. Journal of Experimental Botany, 2009, 60(2): 547-556.
[37]
Gaspar M l, Bousser A, Sissoeff I et al. Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea[J]. Plant Science, 2003, 165(1): 21-31.
[38]
Lee S H, Singh A P, Chung G C. Rapid accumulation of hydrogen peroxide in cucumber roots due to exposure to low temperature appears to mediate decreases in water transport[J]. Journal of Experimental Botany, 2004, 55(403): 1733-1741.
[39]
Steudle E. Water uptake by plant roots: an integration of views[J]. Acta Physiologiae Plantrum, 2004, 26(3): 77.
[40]
Lee S H, Chung G C, Steudle E. Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling-tolerant figleaf gourd[J]. Journal of Experimental Botany, 2005, 56(413): 985-995.
[41]
Azad A K, Sawa Y, Ishikawa T, Shibata H. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals[J]. Plant and Cell Physiology, 2004, 45: 608-617.
[42]
Alexandersson E, Fraysse L, Sjvall-Larsen S et al. Whole gene family expression and drought stress regulation of aquaporins[J]. Plant Molecular Biology, 2005, 59(3): 469-484.
[43]
Maathuis F J M, Filatov V, Herzyk P et al. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress.[J]. Plant Journal, 2003, 35: 675-692.
[44]
Guo L, Wang Z Y, Lin H et al. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family[J]. Cell Research, 2006, 16(3): 277-286.
[45]
Fricke W, Akhiyarova G, Wei W et al. The short-term growth response to salt of the developing barley leaf[J]. Journal of Experimental Botany, 2006, 57(5): 1079-1095.
[46]
Hose E, Steudle E, Hartung W. Abscisic acid and hydraulic conductivity of maize roots: a study using cell-and root-pressure probes[J]. Planta, 2000, 211(6): 874-882.
[47]
Lian H L, Yu X, Ye Q et al. The role of aquaporin RWC3 in drought avoidance in rice[J]. Plant and Cell Physiology, 2004, 45(4): 481-489.
[48]
Otto B, Uehlein N, Sdorra S et al. Aquaporin tetramer composition modifies the function of tobacco aquaporins[J]. Journal of Biological Chemistry, 2010, 285(41): 31253-31260.
[49]
Heckwolf M, Pater D, Hanson D T et al. The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator[J]. The Plant Journal, 2011, 67(5): 795-804.
[50]
Yool A J, Campbell E M. Structure, function and translational relevance of aquaporin dual water and ion channels[J]. Molecular Aspects of Medicine, 2012, 33(5-6): 553-561.
[51]
Chen S, Polle A. Salinity tolerance of Populus[J]. Plant Biology, 2010, 12(2): 317-333.
[52]
Ruiz-Lozano J M, Porcel R, Azcón C et al. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies[J]. Journal of Experimental Botany, 2012, 63(11): 4033-4044.
[53]
Maurel C, Verdoucq L, Luu D T et al. Plant aquaporins: membrane channels with multiple integrated functions[J]. Annual Review of Plant Biology, 2008, 59: 595-624.
Maurel C, Reizer J, Schroeder J I et al. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes[J]. The EMBO Journal, 1993, 12(6): 2241-2247.
[56]
Chaumont F, Barrieu F, Wojcik E et al. Aquaporins constitute a large and highly divergent protein family in maize[J]. Plant Physiology, 2001, 125(3): 1206-1215.
[57]
Johanson U, Karlsson M, Johansson I et al. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants[J]. Plant Physiology, 2001, 126(4): 1358-1369.
[58]
Sakurai J, Ishikawa F, Yamaguchi T et al. Identification of 33 rice aquaporin genes and analysis of their expression and function[J]. Plant & Cell Physiology, 2005, 46(9): 1568-1577.
[59]
Park W, Scheffler B E, Bauer P J et al. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.)[J]. BMC Plant Biology, 2010, 10(1): 142.
[60]
Wallace I S, Choi W G, Roberts D M. The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2006, 1758(8): 1165-1175.
[61]
Gustavsson S, Lebrun A S, Nordén K et al. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels[J]. Plant Physiology, 2005, 139(1): 287-295.
[62]
Tuskan G A, Difazio S, Jansson S et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313(5793): 1596-1604.
[63]
Fujiyoshi Y, Mitsuoka K, de Groot B L et al. Structure and function of water channels[J]. Current Opinion in Structural Biology, 2002, 12(4): 509-515.
[64]
Tornroth-Horsefield S, Wang Y, Hedfalk K et al. Structural mechanism of plant aquaporin gating[J]. Nature, 2006, 439(7077): 688-694.
[65]
Nyblom M, Frick A, Wang Y et al. Structural and functional analysis of SoPIP2;1 mutants adds insight into plant aquaporin gating[J]. Journal of Molecular Biology, 2009, 387(3): 653-668.
[66]
HIll A, Shachar-Hill B, Shachar-Hill Y. What are aquaporins for?[J]. The Journal of Membrane Biology, 2004, 197(1): 1-32.
[67]
Holm L M, Jahn T P, Mller A L et al. NH3 and NH+4 permeability in aquaporin-expressing Xenopus oocytes[J]. European Journal of Physiology, 2005, 450(6): 415-428.
[68]
Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. The tobacco aquaporin NtAQP1 is a member CO2 pore with physiological functions[J]. Nature, 2003, 425: 734-737.
[69]
Li X, Wang X, Yang Y et al. Single-molecule analysis ofPIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation[J]. The Plant Cell, 2011, 23(10): 3780-3797.
Sharp R E, Poroyko V, Hejlek L G et al. Root growth maintenance during water deficits: physiology to functional genomics[J]. Journal of Experimental Botany, 2004, 55(407): 2343-2351.
[72]
Gerbeau P, Guclu J, Ripoche P et al. Aquaporin NtTIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes[J]. Plant Journal, 1999, 18(6): 577-587.
[73]
Santoni V, Verdoucq L, Sommerer N et al. Methylation of aquaporins in plant plasma membrane[J]. Biochemical Journal, 2006, 400: 189-197.
[74]
Miao G, Hong Z, Verma D. Topology and phosphorylation of soybean nodulin-26, an intrinsic protein of the peribacteroid membrane[J]. The Journal of Cell Biology, 1992, 118(2): 481-490.
[75]
Ma J F, Tamai K, Yamaji N et al. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688-691.
[76]
Jang J Y, Lee S H, Rhee J Y et al. Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses[J]. Plant Molecular Biology, 2007, 64(6): 621-632.
[77]
Lovisolo C, Schubert A. Mercury hinders recovery of shoot hydraulic conductivity during grapevine rehydration: evidence from a whole-plant approach[J]. New Phytologist, 2006, 172(3): 469-478.
[78]
Lian H L, Yu X, Lane D et al. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment[J]. Cell Research, 2006, 16(7): 651-660.
[79]
Xin S C, Yu G H, Sun L L et al. Expression of tomato SlTIP2;2 enhances the tolerance to salt stress in the transgenic Arabidopsis and interacts with target proteins[J]. Journal of Plant Research, 2014, 127: 695-708.