全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

作物残体与其生物炭配施对土壤有机碳及其自身矿化率的提升

DOI: 10.11674/zwyf.2015.0413, PP. 943-950

Keywords: 作物残体,生物炭,各组分有机碳,有机碳矿化

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】本研究通过探讨小麦和玉米残体与其生物炭配施对土壤各组分有机碳及其自身有机碳矿化的影响,揭示其在土壤固碳和培肥方面的效应,为农田有机物资源合理利用提供理论支撑。【方法】采用室内恒温培养试验,共设置小麦或玉米残体(根茬、秸秆)和秸秆制成的生物炭单施(WS、WR、WB、MS、MR、MB),配施(WS+WB、WR+WB、MS+MB、MR+MB)以及对照(CK)构成的11个处理,培养期间测定土壤CO2释放量,培养结束后测定土壤总有机碳(TOC)、可溶性有机碳(DOC)、微生物量碳(MBC)、颗粒有机碳(POC)以及粗细颗粒有机碳含量(CPOC、FPOC)。【结果】添加玉米有机物料对土壤TOC、MBC、POC、CPOC和FPOC含量的增加作用普遍高于添加小麦有机物料。添加小麦或玉米秸秆对土壤TOC、POC、CPOC、FPOC含量的增加作用均高于添加根茬。单独添加生物炭,作物残体与生物炭配施和单独添加作物残体处理分别在培养的第4、8、21d有机碳矿化速率最大,为有机碳矿化快速期,之后矿化速率减缓并逐渐趋于稳定。单独添加作物残体其有机碳累积矿化率最大,达到30%~46%;与对照相比,添加有机物料的各处理均显著增加了土壤TOC含量,其中添加生物炭处理土壤TOC含量增幅最大;单独添加小麦和玉米生物炭处理,土壤TOC含量分别显著增加34.4%和36.5%,但其有机碳累积矿化率仅为3%左右,土壤FPOC含量及敏感性指数在单独添加生物炭处理最高;小麦和玉米残体与其生物炭配施处理,土壤MBC和CPOC含量分别显著增加80.2%~199.2%,且其有机碳累积矿化率为12%~19%,介于生物炭和残体单施之间,土壤CPOC含量及敏感性指数均表现为配施处理最高。【结论】单独添加作物残体能够较好地补充土壤养分,但CO2释放量显著高于单施生物炭及配施处理;单独添加生物炭其有机碳累积矿化率较低,短期内对土壤养分的补充作用较小。作物残体与其生物炭配施可以较好地克服各自单独施用的弊端,尤其是玉米秸秆与其生物炭配施,在保证作物养分供应的同时能增加土壤碳库储量,对土壤肥力提升效果更好。

References

[1]  Haei M, quist M G, Ilstedt U et al. The influence of soil frost on the quality of dissolved organic carbon in a boreal forest soil: combining field and laboratory experiments[J]. Biogeochemistry, 2012, 107(1-3): 95-106.
[2]  Xiao K, Zhou J, Liu X et al. Leaching of dissolved organic carbon (DOC) as affected by plant residue composition and soil pH[M]. Zhejiang: Zhejiang University Press, 2013. 475-478.
[3]  Cambardella C A, Elliott E T. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils[J]. Soil Science Society of America Journal, 1994, 58(1): 123-130.
[4]  Yan D, Wang D, Yang L. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil[J]. Biology and Fertility of Soils, 2007, 44(1): 93-101.
[5]  Janzen H H, Campbell C A, Brandt S A et al. Light-fraction organic matter in soils from long-term crop rotations[J]. Soil Science Society of America Journal, 1992, 56(6): 1799-1806.
[6]  Purakayastha T J, Rudrappa L, Singh D et al. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system[J]. Geoderma, 2008, 144(1): 370-378.
[7]  马涛涛, 颜冬冬, 毛连纲, 等. 4种熏蒸剂处理对土壤可溶性有机氮和微生物量碳氮的影响[J]. 中国生态农业学报, 2014, 22(2): 159-164.
[8]  肖新, 朱伟, 肖靓, 等. 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮[J]. 农业工程学报, 2013 29(21): 91-98.
[9]  Antal M J, Gronli M. The art, science, and technology of charcoal production[J]. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619-1640.
[10]  陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16): 3324-3333.
[11]  Sohi S P, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil[J]. Advances in Agronomy, 2010, 105: 47-82.
[12]  蒙世协, 刘春岩, 郑循华, 等. 小麦秸秆还田量对晋南地区裸地土壤-大气间甲烷、二氧化碳、氧化亚氮和一氧化氮交换的影响[J]. 气候与环境研究, 2012, 17(4): 504-514.
[13]  Streubel J D, Collins H P, Perez M G et al. Influence of contrasting biochar types on five soils at increasing rates of application[J]. Soil Biology and Biochemistry, 2011, 75(4): 1402-1413.
[14]  鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2005. 263-270.
[15]  刘梦云, 常庆瑞, 齐雁冰, 孙宁. 黄土台塬不同土地利用土壤有机碳与颗粒有机碳[J]. 自然资源学报, 2010, 25(2): 218-226.
[16]  Banger K, Toor G S, Biswas A et al. Soil organic carbon fractions after 16-years of applications of fertilizers and organic manure in a Typic Rhodalfs in semi-arid tropics[J]. Nutrient Cycling in Agroecosystems, 2010, 86(3), 391-399.
[17]  Puget P, Drink L E. Short-term dynamics of root-and shoot-derived carbon from a leguminous green manure[J]. Soil Science Society of America Journal, 2001, 65: 771-779.
[18]  Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7141): 143-144.
[19]  张千丰, 王光华. 生物炭理化性质及对土壤改良效果的研究进展[J]. 土壤与作物, 2012 1(4): 219-226.
[20]  匡崇婷, 江春玉, 李忠佩, 胡锋. 添加生物质炭对红壤水稻土有机碳矿化和微生物生物量的影响[J]. 土壤, 2012, 44(4): 570-575.
[21]  范分良, 黄平容, 唐勇军, 等. 微生物群落对土壤微生物呼吸速率及其温度敏感性的影响[J]. 环境科学, 2012, 33(3): 932-937.
[22]  Bruun E W, Ambus P, Egsgaard H et al. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics[J]. Soil Biology and Biochemistry, 2012, 46: 73-79.
[23]  王娟, 张丽君, 姚槐应. 添加秸秆和黑炭对水稻土碳氮转化及土壤微生物代谢图谱的影响[J]. 中国水稻科学, 2013, 27(1): 97-104.
[24]  陈红霞, 杜章留, 郭伟, 张庆忠. 施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J]. 应用生态学报, 2011, 22(11): 2930-2934.
[25]  Yang X Y, Ren W D, Sun B H, Zhang S L. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China[J]. Geoderma, 2012, 177: 49-56.
[26]  龚伟, 颜晓元, 王景燕, 等. 长期施肥对小麦玉米作物系统土壤腐殖质组分碳和氮的影响[J]. 植物营养与肥料学报, 2009, 15(6): 1245-1252.
[27]  于建光, 李辉信, 陈小云, 胡锋. 秸秆施用及蚯蚓活动对土壤活性有机碳的影响[J]. 应用生态学报, 2007, 18(4): 818-824.
[28]  Lou Y L, Wang J K, Liang W J. Impacts of 22-year organic and inorganic N managements on soil organic C fractions in a maize field, northeast China[J]. Catena, 2011, 87(3) 386-390.
[29]  李江涛, 张斌, 彭新华, 赖涛. 施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响[J]. 土壤学报, 2004, 41(6): 912-917.
[30]  高海英, 何绪生, 陈心想, 等. 生物炭及炭基硝酸铵肥料对土壤化学性质及作物产量的影响[J]. 农业环境科学学报, 2012, 31(10): 1948-1955.
[31]  Christopher J A, Jean D F, Neil A H. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil, 2010, 337: 1-18.
[32]  Fernández J M, Nieto M, López-de-Sá E G et al. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers[J]. Science of the Total Environment, 2014, 482: 1-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133