全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

田间玉米和蚕豆对低磷胁迫响应的差异比较

DOI: 10.11674/zwyf.2015.0409, PP. 911-919

Keywords: 玉米,蚕豆,低磷胁迫,根际,根系,适应性反应

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】植物在长期进化过程中形成了一系列适应机制,以应对低磷胁迫。本文提出玉米主要通过根系形态变化适应低磷胁迫的假设,并通过与蚕豆植株在根系形态与生理方面对低磷胁迫反应的比较试验加以验证。【方法】在中国农业大学上庄长期定位试验田进行两年田间实验,玉米和蚕豆分别单作,重复3次。在玉米抽雄前的拔节至大喇叭口期和蚕豆的初花至盛花期两次取样(两年的两次取样时间间隔10~12天),比较研究了不供磷和供磷100kg/hm2下玉米和蚕豆生长和磷素吸收、根系在0—40cm土层中分布、以及根际pH值和酸性磷酸酶活性的差异。【结果】1)玉米植株的生物量和含磷量远远高于蚕豆;第一次取样时蚕豆的根冠比高于玉米,而且两种植物低磷下的根冠比高于供磷充足处理。两次取样时玉米的总根长大于蚕豆,两种植物的大部分根系分布在0—20cm表层土壤,玉米根系在0—10cm土层的分布更多。2)蚕豆根系的比根长明显大于玉米,但单位根长吸磷量低于玉米,两种植物间的上述差异不受取样时间和供磷水平的影响。3)两次取样时,蚕豆根表的酸性磷酸酶活性均明显高于玉米。玉米根表的酸性磷酸酶活性在两个供磷水平下没有差异。第一次取样时,缺磷蚕豆根表的酸性磷酸酶活性高于供磷充足的蚕豆植株。4)缺磷蚕豆的根际土壤pH值明显低于供磷充足蚕豆;但玉米根际土壤pH值在缺磷和供磷充足条件下无显著差异。【结论】低磷条件下两种植物的根冠比均明显增加。玉米根系单位根长的吸磷量高于蚕豆,并且在含磷量丰富的表层土壤分布有更多根系,但缺磷条件下玉米没有增加根系的质子和酸性磷酸酶的分泌,主要以根系形态变化来适应低磷胁迫。结果支持本文提出的玉米主要通过根系形态变化适应低磷胁迫的假设。但蚕豆在低磷条件下除了增加根系生长外,还具有通过增加质子分泌和根表酸性磷酸酶活性提高根际土壤有效磷浓度的潜力。

References

[1]  Helal H M. Varietal differences in root phosphatase activity as related to the utilization of organic phosphates[J]. Plant and Soil, 1990, 123: 161-163.
[2]  Moll R H, Kamprath E J, Jackson, W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy Journal, 1982, 74: 562-564.
[3]  张恩和, 张新慧, 王慧珍. 不同基因型春蚕豆对磷胁迫的适应性反应[J]. 生态学报, 2004, 24(8): 1589-1593.
[4]  Gardner W K, Parbery D G, Barber D A. The acquisition of phosphorus by Lupinusalbus L. II. The effect of varying phosphorus supply and soil type on some characteristics of the soil/root interface[J]. Plant and Soil, 1982, 68: 33-41.
[5]  Neumann G, Massonneau A, Martinoia E et al. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupine[J]. Planta, 1999, 208: 373-382.
[6]  Neumann G, Martinoia E. Cluster roots-an underground adaptation for survival in extreme environments[J]. Trends in Plant Science, 2002, 7: 162-167.
[7]  Shane M W, Lambers H. Cluster roots: a curiosity in context[J]. Plant and Soil, 2005, 274: 101-125.
[8]  George T S, Gregory P J, Robinson J S et al. Changes in phosphorus concentrations and pH in the rhizosphere of some agroforestry and crop species[J]. Plant and Soil, 2002, 246: 65-73.
[9]  Liu Y, Mi G H, Chen F J et al. Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability[J]. Plant Science, 2004, 167: 217-223.
[10]  Mollier A, Pellerin S. Maize root system growth and development as influenced by phosphorus deficiency[J]. Journal of Experimental Botany, 1999, 50: 487-497.
[11]  Zhu J, Kaeppler S M, Lynch J P. Topsoil foraging and phosphorus acquisition efficiency in maize[J]. Functional Plant Biology, 2005, 32: 749-762.
[12]  Zhu J M, Lynch J P. The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays L.) seedlings[J]. Functional Plant Biology, 2004, 31: 949-958.
[13]  Li K P, Xu Z P, Zhang K W et al. Efficient production and characterization for maize inbred lines with low-phosphorus tolerance[J]. Plant Science, 2006, 172: 255-264.
[14]  Soon Y K, Kalra Y P. A comparison of plant tissue digestion methods for nitrogen and phosphorus analyses[J]. Canadian Journal of Soil Science, 1995, 75: 243-245.
[15]  Luster J, Finlay R. Handbook of methods used in rhizosphere research[M]. Birmensdorf, Switzerland Swiss Federal Research Institute WSL, 2006, 631-632.
[16]  Amos B, Walters T. Maize root biomass and net rhizodeposited carbon: an analysis of the literature[J]. Soil Science Society of America Journal, 2006, 70: 1489-1503.
[17]  Wang H, Inukai Y, Yamauchi A. Root development and nutrient uptake[J]. Critical Review in Plant Science, 2006, 25: 279-301.
[18]  Peng Y F, Niu J F, Peng Z P et al. Shoot growth potential drives N uptake in maize plants and correlates with root growth in the soil[J]. Field Crops Research, 2010, 115: 85-93.
[19]  Braum S M, Helmke P A. White lupin utilizes soil phosphorus that is unavailable to soybean[J]. Plant and Soil, 1995, 176: 95-100.
[20]  Ae N, Otani T, Makino T et al. Role of cell wall of groundnut roots in insolubilizing sparingly soluble phosphorus in soil[J]. Plant and Soil, 1996, 186: 197-204.
[21]  李淑敏. 间作作物吸收磷的种间促进作用机制研究 [D]. 北京: 中国农业大学博士学位论文, 2004.
[22]  Neumann G, Rmheld V. Root excretion of carboxylic acids and protons in phosphorus-deficient plants[J]. Plant and Soil, 1999, 211: 121-130.
[23]  Li H G, Shen J B, Zhang F S et al. Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems[J]. Plant and Soil, 2008, 312: 139-150.
[24]  Lynch J P. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops[J]. Plant Physiology, 2011, 156: 1041-1049.
[25]  Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review[J]. Plant and soil, 2001, 237: 173-195.
[26]  Marschner P. Mineral nutrition of higher plants(3rd edition)[M]. London: Academic Press, 2011.
[27]  Mengel K, Kirkby E A. Principles of plant nutrition(5th edition)[M]. Netherlands: Kluwer Academic Publishers, 2001.
[28]  Raghothama K G. Phosphate acquisition: Annual review of plant biology, 1999, 50: 665-693.
[29]  Barber S A. Soil Nutrient bioavailability: a mechanistic approach(3rd edition)[M]. New York: John Wiley & Sons Wiley, 1995.
[30]  Lynch J P. Root architecture and plant productivity[J]. Plant Physiology, 1995, 109: 7-13.
[31]  Shargleng A N. Phosphorus: agriculture and the environment[M]. Madison, US: American Society of Agronomy, Crop Science Society of America, Soil Science of America, 2005.
[32]  Chiou T J, Lin S I. Signaling network in sensing phosphate availability in plants[J]. Annual Review of Plant Biology, 2011, 62: 185-206.
[33]  Neumann G, Rmheld V. Root excretion of carboxylic acids and protons in phosphorus-deficient plants[J]. Plant and Soil, 1999, 211: 121-130.
[34]  Hinsinger P, Plassard C, Tang C, Jaillard B. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review[J]. Plant and Soil, 2003, 248: 43-59.
[35]  Dinkelaker B, Rmheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinusalbus L.)[J]. Plant Cell and Environment, 1989, 12: 285-292.
[36]  Helal H M, Dressler A. Mobilisation and turn over of soil phosphorus in the rhizosphere[J]. Z. Pflanzenernaehrung und Bodenkunde, 1989, 152: 175-180.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133