全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同生长环境下水稻氮、磷、钾利用相关性状的QTL定位分析

DOI: 10.11674/zwyf.2015.0401, PP. 823-835

Keywords: 水稻(OryzasativaL.),近等基因系,养分吸收,数量性状基因座,QTL多效性

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】鉴定影响水稻氮、磷、钾利用相关性状的QTL,为开展水稻养分高效利用分子标记辅助选择育种和肥高效基因的图位克隆提供依据。【方法】以云南强耐冷(2级)粳稻地方品种丽江新团黑谷与十和田杂交、回交获包含105个株系的孕穗期耐冷性近等基因系BC4F8及双亲为材料,在云南白邑(冷水胁迫)、寻甸(自然低温胁迫)和玉溪(正常生长环境)3种生长环境下进行水稻氮、磷、钾养分吸收相关性状的鉴定,并利用构建的含有180个SSR标记,全长为1820.6cM,标记间平均距离为15.67cM的遗传图谱,用基于完备区间作图法的QTLIciMappingV3.2软件对16个性状进行QTL定位分析。【结果】3种环境下共检测到56个QTL,分布在第1、2、3、4、5、6、7、9和10染色体上,单个性状QTL数为1~10个,单个QTL可解释的各自性状表型贡献率为8.88%~35.30%。其中,氮、磷、钾利用效率QTLs数分别为12个、27个和17个。而qTNA-1a、qTPA-1、qPHI-1、qPHI-6、qPHI-7b和qKHI-6共6个QTL在冷害和正常环境下均能检测到,稳定性较高,其贡献率变幅为10.63%~31.57%。在第1、3、4、5、6、7和10染色体上有13个标记区域存在QTL成族分布,单个QTL位点控制的性状数为2~5个,其中共同控制磷总吸收量、磷素干物质生产效率、磷素收获指数、每100kg籽粒需钾量和钾素收获指数等性状的位点数最多。【结论】获得56个影响氮、磷、钾利用相关性状的QTL,且发现的13个QTL富集区可作为水稻氮、磷、钾高效利用分子育种的重要候选区域。

References

[1]  穆平, 黄超, 李君霞, 等. 低磷胁迫下水稻产量性状变化及其QTL定位[J]. 作物学报, 2008, 34(7): 1137-1142.
[2]  Ming F, Zheng X W, Mi G H et al. Identification of quantitative trait loci affecting tolerance to low phosphorus in rice(Oryza sativa L.)[J]. Chinese Science Bulletin, 2000, 45(6): 520-525.
[3]  Hu B, Wu P, Liao C Y et al. QTLs and epistasis underlying activity of acid phosphatase under phosphorus sufficient and deficient condition in rice(Oryza sativa L.)[J]. Plant and Soil, 2001, 230(1): 99-105.
[4]  Yohei K, Juan P T, Terry R et al. QTLs for phosphorus deficiency tolerance detected in upland NERICA varieties[J]. Plant Breeding, 2013, 132(3): 259-265.
[5]  Ni J J, Wu P, Senadhira D, Huang N. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.)[J]. Theoretical Applied Genetics, 1998, 97(8): 1361-1369.
[6]  Koyama M L, Levesley A, Koebner R M et al. Quantitative trait loci for component physiological traits determining salt tolerance in rice[J]. Plant Physiology, 2001, 125(1): 406-422.
[7]  Lin H X, Zhu M Z, Yano M et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance[J]. Theoretical and Applied Genetics, 2004, 108(2): 253-260.
[8]  Shimizu A, Guerta C Q, Gregorio G B et al. QTLs for nutritional contents of rice seedlings(Oryza sativa L.) in solution cultures and its implication to tolerance to iron-toxicity[J]. Plant and Soil, 2005, 275(1): 57-66.
[9]  杨树明, 王荔, 曾亚文, 等. 粳稻丽江新团黑谷近等基因系孕穗期耐冷性指标性状的遗传分析[J]. 华北农学报, 2013, 28(1): 7-11.
[10]  曾亚文, 叶昌荣,申时全.水稻穗期耐冷NILs研制和QTL分析[J]. 中国农业科学, 2000, 33(4): 109.
[11]  李合生. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2000. 184-185.
[12]  鲍士旦. 土壤农化分析[M]. 北京: 北京农业大学出版社, 2000. 30-107.
[13]  Jiang L G, Dai T B, Jiang D et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars[J]. Field Crops Research, 2004, 88(2): 239-250.
[14]  Murray M G,Thompson W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4321-4325.
[15]  Temnykh S, Park W D, Ayres N et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2000, 100(5): 697-712.
[16]  王建康. 数量性状基因的完备区间作图方法[J]. 作物学报, 2009, 35 (2): 239-245.
[17]  Mccouch S R. Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84.
[18]  Dong W, Ke H C, Jun F P et al. Genetic dissection of grain nitrogen use efficiency and grain yield and their relationship in rice[J]. Field Crops Research, 2011, 124(3): 340-346.
[19]  Wan X Y, Wan J M, Weng J F et al. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments[J]. Theoretical and Applied Genetics, 2005, 110(7): 1334-1346.
[20]  Wissuwa M, Yano M, Ae N. Mapping of QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 1998, 97(6): 777-783.
[21]  Wang C, Ying S, Huang H et al. Involvement of OsSPX1 in phosphate homeostasis in rice[J]. Plant Journal, 2009, 57(5): 895-904.
[22]  Shirasawa S, Endo T, Nakagomi K et al. Delimitation of a QTL region controlling cold tolerance at booting stage of a cultivar, ‘Lijiangxintuanheigu’, in rice, Oryza sativa L[J]. Theoretical and Applied Genetics, 2012, 124(5): 937-946.
[23]  Saito K, Hayano S Y, Kuroki M, Sato Y. Map-based cloning of the rice cold tolerance gene Ctb1 [J]. Plant Science, 2010, 179(1): 97-102.
[24]  Zhou L, Zeng Y W, Hu G L et al. Characterization and identification of cold tolerant near-isogenic lines in rice[J]. Breeding Science, 2012, 62(2): 196-201.
[25]  Ye C, Fukai S, Godwin I D et al. A QTL controlling low temperature induced spikelet sterility at booting stage in rice[J]. Euphytica, 2010, 176(3): 291-301.
[26]  Zhang T, Zhao X, Wang W S et al. Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes[J]. PloS One, 2012, 7(8): e43274.
[27]  Chakravarthi B K, Naravaneni R. SSR marker based DNA fingerprinting and diversity studying rice (Oryza sativa L)[J]. African Journal of Biotechnology, 2006, 5(9): 684-688.
[28]  Mori M, Onishi K, Tokizono Y et al. Detection of a novel quantitative trait locus for cold tolerance at the booting stage derived from a troppical japonica rice variety silewah[J]. Breeding Science, 2011, 61(1): 61-68.
[29]  Theocharis A, Clement C, Barka E A. Physiological and molecular changes in plants grown at low temperatures[J]. Planta, 2012, 235(6): 1091-1105.
[30]  Zia M S, Salim M, Aslam M, Gill and Rahmatullah M A.Effect of low temperature of irrigation water on rice growth and nutrient uptake[J]. Journal of Agronomy and Crop Science, 1992, 173 (1): 22-31.
[31]  林海建, 张志明, 张永中, 等.作物氮、磷、钾利用相关性状的QTL定位研究进展[J]. 植物营养与肥料学报, 2010, 16 (3): 732 -743.
[32]  Cho Y I, Jiang W Z, Chin J H. Identification of QTLs associated with physiological nitrogen use efficiency in rice[J]. Molecular Cells, 2007, 23(1): 72-79.
[33]  方萍, 陶勤南, 吴平. 水稻吸氮能力与氮素利用率的QTLs及其基因效应分析[J]. 植物营养与肥料学报, 2001, 7(2): 159-165.
[34]  Wei D, Cui K H, Ye G Y et al. QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice[J]. Plant and Soil, 2012, 359(2): 281-295.
[35]  Tong H H, Chen L, Li W P et al. Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.)[J]. Molecular Breeding, 2011, 28(4): 495-509.
[36]  Feng Y, Cao L Y, Wu W M et al. Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice (Oryza sativa L.)[J]. Plant Breeding, 2010, 129(6): 652-656.
[37]  Obara M, Kajiura M, Fukuka Y et al. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2001, 52(359): 1209-1217.
[38]  Bi Y M, Kant S, Clarke J et al. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling[J]. Plant Cell and Environment, 2009, 32(12): 1749-1760.
[39]  Kurai T, Wakayama M, Abiko T et al. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions[J]. Plant Biotechnology Journal, 2011, 9(8): 826-837.
[40]  Xu Y F, Wang R F, Tong Y P et al. Mapping QTLs for yield and nitrogen related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression[J]. Theoretical and Applied Genetics, 2014, 127(1): 59-72.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133