Ming F, Zheng X W, Mi G H et al. Identification of quantitative trait loci affecting tolerance to low phosphorus in rice(Oryza sativa L.)[J]. Chinese Science Bulletin, 2000, 45(6): 520-525.
[3]
Hu B, Wu P, Liao C Y et al. QTLs and epistasis underlying activity of acid phosphatase under phosphorus sufficient and deficient condition in rice(Oryza sativa L.)[J]. Plant and Soil, 2001, 230(1): 99-105.
[4]
Yohei K, Juan P T, Terry R et al. QTLs for phosphorus deficiency tolerance detected in upland NERICA varieties[J]. Plant Breeding, 2013, 132(3): 259-265.
[5]
Ni J J, Wu P, Senadhira D, Huang N. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.)[J]. Theoretical Applied Genetics, 1998, 97(8): 1361-1369.
[6]
Koyama M L, Levesley A, Koebner R M et al. Quantitative trait loci for component physiological traits determining salt tolerance in rice[J]. Plant Physiology, 2001, 125(1): 406-422.
[7]
Lin H X, Zhu M Z, Yano M et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance[J]. Theoretical and Applied Genetics, 2004, 108(2): 253-260.
[8]
Shimizu A, Guerta C Q, Gregorio G B et al. QTLs for nutritional contents of rice seedlings(Oryza sativa L.) in solution cultures and its implication to tolerance to iron-toxicity[J]. Plant and Soil, 2005, 275(1): 57-66.
Jiang L G, Dai T B, Jiang D et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars[J]. Field Crops Research, 2004, 88(2): 239-250.
[14]
Murray M G,Thompson W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4321-4325.
[15]
Temnykh S, Park W D, Ayres N et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2000, 100(5): 697-712.
Mccouch S R. Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84.
[18]
Dong W, Ke H C, Jun F P et al. Genetic dissection of grain nitrogen use efficiency and grain yield and their relationship in rice[J]. Field Crops Research, 2011, 124(3): 340-346.
[19]
Wan X Y, Wan J M, Weng J F et al. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments[J]. Theoretical and Applied Genetics, 2005, 110(7): 1334-1346.
[20]
Wissuwa M, Yano M, Ae N. Mapping of QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 1998, 97(6): 777-783.
[21]
Wang C, Ying S, Huang H et al. Involvement of OsSPX1 in phosphate homeostasis in rice[J]. Plant Journal, 2009, 57(5): 895-904.
[22]
Shirasawa S, Endo T, Nakagomi K et al. Delimitation of a QTL region controlling cold tolerance at booting stage of a cultivar, ‘Lijiangxintuanheigu’, in rice, Oryza sativa L[J]. Theoretical and Applied Genetics, 2012, 124(5): 937-946.
[23]
Saito K, Hayano S Y, Kuroki M, Sato Y. Map-based cloning of the rice cold tolerance gene Ctb1 [J]. Plant Science, 2010, 179(1): 97-102.
[24]
Zhou L, Zeng Y W, Hu G L et al. Characterization and identification of cold tolerant near-isogenic lines in rice[J]. Breeding Science, 2012, 62(2): 196-201.
[25]
Ye C, Fukai S, Godwin I D et al. A QTL controlling low temperature induced spikelet sterility at booting stage in rice[J]. Euphytica, 2010, 176(3): 291-301.
[26]
Zhang T, Zhao X, Wang W S et al. Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes[J]. PloS One, 2012, 7(8): e43274.
[27]
Chakravarthi B K, Naravaneni R. SSR marker based DNA fingerprinting and diversity studying rice (Oryza sativa L)[J]. African Journal of Biotechnology, 2006, 5(9): 684-688.
[28]
Mori M, Onishi K, Tokizono Y et al. Detection of a novel quantitative trait locus for cold tolerance at the booting stage derived from a troppical japonica rice variety silewah[J]. Breeding Science, 2011, 61(1): 61-68.
[29]
Theocharis A, Clement C, Barka E A. Physiological and molecular changes in plants grown at low temperatures[J]. Planta, 2012, 235(6): 1091-1105.
[30]
Zia M S, Salim M, Aslam M, Gill and Rahmatullah M A.Effect of low temperature of irrigation water on rice growth and nutrient uptake[J]. Journal of Agronomy and Crop Science, 1992, 173 (1): 22-31.
Cho Y I, Jiang W Z, Chin J H. Identification of QTLs associated with physiological nitrogen use efficiency in rice[J]. Molecular Cells, 2007, 23(1): 72-79.
Wei D, Cui K H, Ye G Y et al. QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice[J]. Plant and Soil, 2012, 359(2): 281-295.
[35]
Tong H H, Chen L, Li W P et al. Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.)[J]. Molecular Breeding, 2011, 28(4): 495-509.
[36]
Feng Y, Cao L Y, Wu W M et al. Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice (Oryza sativa L.)[J]. Plant Breeding, 2010, 129(6): 652-656.
[37]
Obara M, Kajiura M, Fukuka Y et al. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2001, 52(359): 1209-1217.
[38]
Bi Y M, Kant S, Clarke J et al. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling[J]. Plant Cell and Environment, 2009, 32(12): 1749-1760.
[39]
Kurai T, Wakayama M, Abiko T et al. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions[J]. Plant Biotechnology Journal, 2011, 9(8): 826-837.
[40]
Xu Y F, Wang R F, Tong Y P et al. Mapping QTLs for yield and nitrogen related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression[J]. Theoretical and Applied Genetics, 2014, 127(1): 59-72.