全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同氮水平下不同中间砧苹果幼树的生长及氮吸收、利用、分配特性

DOI: 10.11674/zwyf.2015.0430, PP. 1088-1094

Keywords: 苹果,中间砧,生长,,吸收,利用,分配

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】苹果矮砧密植栽培是苹果产业发展的方向,目前我国矮化苹果栽培仍套用乔砧苹果管理技术,偏施氮肥,施肥不足和超量并存,易造成矮砧苹果树体早衰或过旺生长。因此急需研究不同类型中间砧苹果在不同施氮量下树体生长及氮素吸收、利用、分配规律,为苹果矮化中间砧高产高效栽培配套技术提供理论依据。【方法】采用盆栽方法,以1年生宫藤富士不同中间砧(SH28、SH38、CG24)幼树为试材,利用稳定性同位素15N标记技术研究了不施氮肥(N0)、适宜施氮肥(N100)和过量施氮肥(N200)三个氮素水平下幼树的生长差异及氮吸收、利用和分配特性。【结果】不同类型中间砧幼树在不同施氮水平下树体生物量和氮利用率差异显著,在不施氮肥(N0)、适宜施氮肥(N100)和过量施氮肥(N200)三个氮素水平下,矮化效果最弱的SH28中间砧幼树在高量氮时,树体生物量和15N利用率显著增加;矮化效果明显的SH38和CG24中间砧幼树在适宜供氮条件下生物量和15N利用率最大,高氮素供应反而不利于树体生长和15N利用率的提高。在不同供氮水平下,15N在不同类型中间砧各部位的分配差异显著。SH28中间砧在高氮量供应时,15N更多分配到地上部;CG24在不施氮肥和适宜施氮条件下更多15N分配到地上部,高量施氮条件下更多分配到根系;SH38在适宜施氮条件下15N较多地分配到根系,不施氮和高量施氮条件下更多的分配到地上部。【结论】中间砧品种、施氮水平及其交互作用均对树体生长和15N利用产生显著影响,其影响显著程度由高到低分别为中间砧品种>施氮水平>施氮水平和中间砧品种的交互作用。施氮水平和中间砧品种的交互作用对根冠比和氮分配的影响较施氮水平和中间砧品种更为显著。随着中间砧矮化程度的增强,氮对树体生长的促进作用减小,树体对氮的响应度和响应速率也相应减弱。

References

[1]  陈学森, 韩明玉, 苏桂林, 等. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见[J]. 果树学报, 2010, 27(4):598-604.Chen X S, Han M Y, Su G Let al. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China[J]. Journal of Fruit Science, 2010, 27(4):598-604.
[2]  王金政, 薛晓敏, 路超. 我国苹果生产现状与发展对策[J]. 山东农业科学, 2010(6):117-119.Wang J Z, Xue X M, Lu C. Current production status and developing countermeasures in China.[J]. Shandong Agricultural Sciences, 2010(6):117-119.
[3]  汪景彦. 苹果矮化密植[M]. 北京: 中国农业科技出版社, 1988.Wang J Y. Apple dwarf and close planting[M]. Beijing:China Agricultural Science and Technology Press, 1988.
[4]  王金政. 果树优质高效安全生产十大关键技术[M]. 济南:山东科学技术出版社, 2008.Wang J Z. Ten key technology of efficient, high quality and safe production of fruit[M]. Jinan:Shandong Science and Technology Press, 2008.
[5]  花蕾, 王永熙, 刘炳辉, 等. 提高渭北苹果品质的生产技术研究[A].“九五”国家科技攻关计划农业领域优秀论文集[C]. 北京:中国农业出版社, 2001.Hua L, Wang Y X, Liu B Het al. Research on improving the production technology of Weibei apple quality[A]. “Ninth Five” national science and technology plan of symposium in agriculture sector[C]. Beijing:China Agriculture Press, 2001.
[6]  巨晓棠, 潘家荣, 刘学军, 张福锁. 北京郊区冬小麦/夏玉米轮作体系中氮肥去向研究[J].植物营养与肥料学报, 2003, 9(3):264-270.Ju X T, Pan J R, Liu X J, Zhang F S. Study on the fate of nitrogen fertilizer in winter wheat/summer maize rotation system in Beijing suburban[J]. Plant Nutrition and Fertilizer Science, 2003, 9(3):264-270.
[7]  钟茜, 巨晓堂, 张福锁. 华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析[J]. 植物营养与肥料学报, 2006, 12(3):285-293.Zhong Q, Ju X T, Zhang F S. Analysis of environmental endurance of winter wheat/summer maize rotation system to nitrogen in North China Plain[J]. Plant Nutrition and Fertilizer Science, 2006, 12(3):285-293.
[8]  Cooper H D, Clarkson D T. Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals—a possible mechanism integrating shoot and root in the regulation of nutrient uptake[J]. Journal of Experimental Botany, 1989, 40(7):753-762.
[9]  李燕婷, 米国华, 陈范骏, 等. 玉米幼苗地上部/根间氮的循环及其基因差异[J].植物生理学报, 2001, 27(3):226-230.Li Y T, Mi G H, Chen F J et al. Genotypic difference of nitrogen recycling between root and shoot of maize seedlings[J]. Plant Physiology Journal, 2001, 27(3):226-230.
[10]  Kiba T, Kudo T, Kojima M, Sakakibara H. Hormonal control of nitrogen acquisition:roles of auxin, abscisic acid, and cytokinin[J]. Journal of Experimental Botany, 2011, 62(4):1399-1409.
[11]  Cooper H D, Clarkson D T. Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals-a possible mechanism integrating shoot and root in the regulation of nutrient uptake[J]. Journal of Experimental Botany, 1989, 40(7):753-762.
[12]  李 晶, 姜远茂, 魏绍冲, 等. 不同施氮水平对烟富3/M26/平邑甜茶幼树当年及翌年氮素吸收、利用、分配的影响[J].植物营养与肥料学报, 2014, 20(2): 407-413.Li J, Jiang Y M, Wei S Cet al. Effects of different N rates on the absorption, allocation and utilization of urea-15N in M. hupehensis Rehd.(Yan Fu3/M26) in the current year and next year[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 407-413.
[13]  米国华, 陈范骏, 张福锁. 作物养分高效的生理基础与遗传改良[M]. 北京:中国农业大学出版社, 2012.Mi G H, Chen F J, Zhang F S. Physiological basis and genetic improvement of nutrient use efficiency in crops[M]. Beijing: China Agricultural University Press, 2012.
[14]  王 艳, 米国华, 张福锁. 氮对不同基因型玉米根系形态变化的影响研究[J]. 中国生态农业学报, 2003, 11(3):69-71.Wang Y, Mi G H, Zhang F S. Effect of nitrate levels on dynamic changes of root morphology in different maize inbred lines[J]. Chinese Journal of Eco-Agriculture, 2003, 11(3):69-71.
[15]  姜琳琳, 韩立思, 韩晓日, 等. 氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响[J]. 植物营养与肥料学报, 2011, 17(1):247-253.Jiang L L, Han L S, Han X Ret al. Effects of nitrogen on growth, root morphological traits, nitrogen uptake and utilization efficiency of maize seedlings[J]. Plant Nutrition and Fertilizer Science, 2011, 17(1):247-253.
[16]  姜远茂, 张宏彦, 张福锁. 北方落叶果树养分资源综合管理理论与实践[M]. 北京:中国农业大学出版社, 2007.Jiang Y M, Zhang H Y, Zhang F S. Concepts & practice of integrate nutrient resource management in northern deciduous fruit[M]. Beijing: China Agricultural Press, 2007.
[17]  姜远茂, 彭福田, 张宏彦. 山东省苹果园土壤有机质及养分状况研究[J]. 土壤通报, 2001, 32(4):167-169.Jiang Y M, Peng F T, Zhang H Y. Status of organic matter and nutrients in Shandong orchard soils[J]. Chinese Journal of Soil Science, 2001, 32(4): 167-169.
[18]  束怀瑞. 苹果学[M]. 北京:中国农业出版社, 1999.Shu H R. Apple science[M]. Beijing:China Agriculture Press, 1999.
[19]  吴楚, 王政权, 范志强, 孙海龙. 氮胁迫对水曲柳幼苗养分吸收、利用和生物量分配的影响[J]. 应用生态学报, 2004, 15(11):2034-2038.Wu C, Wang Z Q, Fan Z Q, Sun H L. Effects of nitrogen stress on nutrient uptake by Fraxinus mandshurica seedlings and their biomass distribution[J]. Chinese Journal of Applied Ecology, 2004, 15(11):2034-2038
[20]  Agren G I, Ingestad T. Root-shoot ratio as balance between nitrogen productivity and photosynthesis[J]. Plant Cell Environment, 1987(10):579-586
[21]  Gower S T, Vogt K A, Grier C C. Carbon dynamics of Rocky Mountain Douglas-fir:Influence of water and nutrient availability[J]. Ecological Monographs, 1992, 62:43-65
[22]  Aphalo P J, Leto T. Effects of light quality on growth and N accumulation in birch seedlings[J]. Tree Physiology, 1997(17): 125-132
[23]  于迟, 张鹤, 李鸿莉, 等. 苹果矮化中间砧 SH40 激素含量及生长素转运蛋白基因pinl表达[J]. 中国农业大学学报, 2012, 17(2):80-84.Yu C, Zhang H, Li H Let al. The content of hormone and auxin transport gene pin1 of SH40 as the interstock of apple[J]. Journal of China Agricultural University, 2012, 17(002):80-84.
[24]  Li H L, Zhang H, Yu Cet al. Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock[J]. Acta Physiologiae Plantarum, 2012(34):235-244
[25]  Sakakibara H. Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plant[J]. Journal of Plant Research, 2003, 116(3):253-257.
[26]  Takei K, Sakakibara H, Sugiyama T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2001, 276(28):26405-26410.
[27]  Zhao D Y, Tian Q Y, Li L H, Zhang W H. Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays L[J]. Annals of Botany, 2007, 100(3):497-503. "

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133