全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物体对硝态氮的吸收转运机制研究进展

DOI: 10.11674/zwyf.2015.0323, PP. 752-762

Keywords: 硝态氮,亲和力转运系统,吸收,再分配,转运蛋白

Full-Text   Cite this paper   Add to My Lib

Abstract:

硝态氮是高等植物重要的氮素营养,直接影响植物的生长。植物根系吸收硝态氮并向地上部转运的机制一直是研究者十分关注的问题。近几年的深入研究使得新的现象与结论被揭示,推动了我们对植物体吸收转运硝态氮生理与分子机制的认识。本文综述了近年来国内外关于植物硝态氮吸收转运的生理及分子机制的相关研究结果。通过整理归类植物硝酸盐吸收相关的生理学数据,介绍了影响植物吸收硝态氮的各种因素。基于膜转运体在植物硝态氮吸收转运过程中发挥的重要作用,本文还重点介绍参与该过程的四大基因家族的成员及功能,即硝酸盐转运体1(NRT1)、硝酸盐转运体2(NRT2)、氯离子通道(CLC)和s型阴离子通道(SLAC),以期为后续研究者提供一个较为全面的理论依据。

References

[1]  Novoa R, Loomis R S. Nitrogen and plant production[J]. Plant and Soil, 1981, 58: 177-204.
[2]  都韶婷, 李玲玲, 章永松, 林咸永. 不同基因型小白菜硝酸盐积累差异及筛选研究[J]. 植物营养与肥料学报, 2008, 14(5): 969-975.
[3]  Steiner H Y, Naider F, Becker J M. The PTR family: A new group of peptide transporters[J]. Molecular Microbiology, 1995, 16: 825-834.
[4]  Krouk G, Crawford N M, Coruzzi G M, Tsay Y F. Nitrate signaling: adaptation to fluctuating environments[J]. Current Opinion in Plant Biology, 2010, 13: 265-272.
[5]  Tsay Y F, Chiu C C, Tsai C B et al. Nitrate transporters and peptide transporters[J]. FEBS Letters, 2007, 581: 2290-2300.
[6]  Huang N C, Chiang C S, Crawford N M, Tsay Y F. CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots[J]. The Plant Cell, 1996, 8: 2183-2191.
[7]  Tsay Y F, Schroeder J I, Feldmann K A, Crawford N M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter[J]. Cell, 1993, 72: 705-713.
[8]  Okamoto M, Vidmar J J, Glass A D M. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana : responses to nitrate provision[J]. Plant and Cell Physiology, 2003, 44(3): 304-317.
[9]  Geiger D, Scherzer S, Mumm P et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 21425-21430.
[10]  Geiger D, Maierhofer T, AL-Rasheid K A S et al. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1[J]. Science Signaling, 2011, 4(173): 1-12.
[11]  Morère-Le Paven M C, Viau L, Hamon A et al. Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula[J]. Journal of Experimental Botany, 2011, 62(15): 5595-5605.
[12]  Wang Y Y, Tsay Y F. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport[J]. The Plant Cell, 2011, 23: 1945-1957.
[13]  Nour-Eldin H H, Andersen T G, Burow M et al. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds[J]. Nature, 2012, 488: 531-534.
[14]  Hsu P K, Tsay Y F. Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth[J]. Plant Physiology, 2013, 163: 844-856.
[15]  郑令欣. 阿拉伯芥AtNRT1.13功能分析 [D]. 台北:台湾大学博士论文,, 2010.
[16]  Leran S, Varala K, Boyer J C et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants[J]. Trend in Plant Science, 2014, 19(1): 5-9.
[17]  Filleur S, Dorbe M F, Cerezo M et al. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake[J]. FEBS Letters, 2001, 489: 220-224.
[18]  Li W, Wang Y, Okamoto M et al. Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster[J]. Plant Physiology, 2007, 143: 425-433.
[19]  Lejay L, Wirth J, Pervent M et al. Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis[J]. Plant Physiology, 2008, 146: 2036-2053.
[20]  Nazoa P, Vidmar J J, Tranbarger T J et al. Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana : responses to nitrate, amino acids and developmental stage[J]. Plant Molecular Biology, 2003, 52: 689-703.
[21]  Kiba T, Feria-Bourrellier A B, Lafouge F et al. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants[J]. The Plant Cell, 2012, 24: 245-258.
[22]  Chopin F, Orsel M, Dorbe M F et al. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds[J]. The Plant Cell, 2007, 19: 1590-1602.
[23]  Dechorgnat J, Patrit O, Krapp A et al. Characterization of the Nrt2.6 gene in Arabidopsis thaliana : A link with plant response to biotic and abiotic stress[J]. Plos One, 2012, 7(8): 1-11.
[24]  De Angeli A, Monachello D, Ephritkhine G et al. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles[J]. Nature, 2006, 442: 939-942.
[25]  Geelen D, Lurin C, Bouchez D et al. Disruption of putative anion channel gene AtCLCa in Arabidopsis suggests a role in the regulation of nitrate content[J]. The Plant Journal, 2000, 21: 259-267.
[26]  Wege S, Jossier M, Filleur S et al. The proline 160 in the selectivity filter of the Arabidopsis NO-3/H+ exchanger AtCLCa is essential for nitrate accumulation in planta[J]. The Plant Journal, 2010, 63: 861-869.
[27]  Von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U. CLC-b-mediated NO-3/H+ exchange across the tonoplast of Arabidopsis vacuoles[J]. Plant and Cell Physiology, 2010, 51(6): 960-968.
[28]  Lv Q D, Tang R J, Liu H et al. Cloning and molecular analysis of the Arabidopsis thaliana chloride channel gene family[J]. Plant Science, 2009, 176: 650-661.
[29]  Negi J, Matsuda O, Nagasawa T et al. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells[J]. Nature, 2008, 452: 483-486.
[30]  Lin C M, Koh S, Stacey G et al. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice[J]. Plant Physiology, 2000, 122(2): 379-388.
[31]  Li D D, Tian M Y, Cai J et al. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings[J]. Plant Growth Regulation, 2013, 70: 257-263.
[32]  Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science, 1998, 3(10): 389-395.
[33]  Stitt M. Nitrate regulation of metabolism and growth[J]. Current Opinion in Plant Biology, 1999, 2(3): 178-186.
[34]  Miller A J, Smith S J. Nitrate transport and compartmentation in cereal root cells[J]. Journal of Experimental Botany, 1996, 47: 843-854.
[35]  McClure P R, Kochian L V, Spanswick R M, Shatf J E. Evidence for cotransport of nitrate and protons in maize roots. I. Effects of nitrate on the membrane potential[J]. Plant Physiology, 1990, 93: 281-289.
[36]  Siebrecht S, Herdel K, Schurr U, Tischner R. Nutrient translocation in the xylem of poplar: diurnal variations and spatial distribution along the shoot axis[J]. Planta, 2003, 217: 783-793.
[37]  Wegner L H, Raschke K. Ion channels in the xylem parenchyma of barley roots. A procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels[J]. Plant Physiology, 1994, 105: 799-813.
[38]  Clarkson D T. Roots and the delivery of solutes to the xylem[J]. Philosophical Transactions of the Royal Society London B, 1993, 341: 5-17.
[39]  Kohler B, Wegner L H, Osipov V, Raschke K. Loading of nitrate into the xylem: apoplastic nitrate controls the voltage dependence of X-QUAC, the main anion conductance in xylem-parenchyma cells of barley roots[J]. The Plant Journal, 2002, 30: 133-142.
[40]  Gilliham M, Tester M. The regulation of anion loading to the maize root xylem[J]. Plant Physiology, 2005, 137: 819-828.
[41]  Chen B M, Wang Z H, Li S X et al. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables[J]. Plant Science, 2004, 167(3): 635-643.
[42]  Miller A J, Fan X R, Orsel M et al. Nitrate transport and signalling[J]. Journal of Experimental Botany, 2007, 58(9): 2297-2306.
[43]  Pearson C J, Volk R J, Jackson W A. Daily changes in nitrate influx, efflux and metabolism in maize and pearl millet[J]. Planta, 1981, 152: 319-324.
[44]  Wang Y Y, Hsu P K, Tsay Y F. Uptake, allocation and signaling of nitrate[J]. Trend in Plant Science, 2012, 17(8): 458-467.
[45]  Fan S C, Lin C S, Hsu P K et al. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate[J]. The Plant Cell, 2009, 21: 2750-2761.
[46]  Sasakawa H, Yamamoto Y. Comparison of the uptake of nitrate and ammonium by rice seedlings[J]. Plant Physiology, 1978, 62: 665-669.
[47]  Delhon P, Gojon A, Tillard P, Passama L. Diurnal regulation of NO-3 uptake in soybean plants IV.Dependence on current photosynthesis and sugar availability to the roots[J]. Journal of Experimental Botany, 1996, 47(7): 893-900.
[48]  Lillo C. Signalling cascades integrating light-enhanced nitrate metabolism[J]. Biochemical Journal, 2008, 415: 11-19.
[49]  Jackson W A, Flesher D, Hageman R H. Nitrate uptake by dark-grown corn seedlings[J]. Plant Physiology, 1973, 51: 120-127.
[50]  Matt P, Geiger M, Walch-Liu P et al. Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate[J]. Plant Cell and Environment, 2001, 24(11): 1119-1137.
[51]  都韶婷,章永松. 增施CO2降低小白菜硝酸盐积累的机理研究[J]. 植物营养与肥料学报, 2010, 16(6): 1509-1514.
[52]  Aslam M, Travis R L, Huffaker R C. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley seedlings[J]. Plant Physiology, 1992, 99: 1124-1133.
[53]  Siddiqi M Y, Glass A D, Ruth T, Rufty T W. Studies of the uptake of nitrate in barley[J]. Plant Physiology, 1990, 93: 1426-1432.
[54]  Youngdahl L J, Pacheco R, Street J J, Vlek P L G. The kinetics of ammonium and nitrate uptake by young rice plant[J]. Plant and Soil, 1982, 69: 225-232.
[55]  Ohmori M, Ohmori K, Strotmann H. Inhibition of nitrate uptake by ammonia in a Blue-Green Algae, Anabaena cylindrica[J]. Archives of Microbiology, 1977, 114: 225-229.
[56]  Aslam M, Travis R. Differential effect of amino acids on nitrate uptake and reduction systems in barley roots[J]. Plant Science, 2001, 160: 219-228.
[57]  Padgett P E, Leonard R T. Free amino acid levels and the regulation of nitrate uptake in maize cell suspension cultures[J]. Journal of Experimental Botany, 1996, 47(7): 871-883.
[58]  Ruffy T W Jr, MacKown C T, Israel D W. Phosphorus stress effects on assimilation of nitrate[J]. Plant Physiology, 1990, 94: 328-333.
[59]  Neyra C A, Hageman R H. Nitrate uptake and induction of nitrate reductase in excised corn roots[J]. Plant Physiology, 1975, 56: 692-695.
[60]  Blevins D G, Barnett N M, Frost W B. Role of potassium and malate in nitrate uptake and translocation by wheat seedlings[J]. Plant Physiology, 1978, 62: 784-788.
[61]  Camacho-Cristóbal J J, González-Fontes A. Boron deficiency decreases plasmalemma H+\|ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots[J]. Planta, 2007, 226: 443-451.
[62]  Cakmak I, Marschner H. Decrease in nitrate uptake and increase in proton release in zinc deficient cotton, sunflower and buckwheat plants[J]. Plant and Soil, 1990, 129: 261-268.
[63]  Heimer Y M, Wray J L, Filner P. The effect of tungstate on nitrate assimilation in higher plant tissues[J]. Plant Physiology, 1969, 44: 1197-1199.
[64]  Quaggiotti S, Ruperti B, Pizzeghello D et al. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize(Zea mays L.)[J]. Journal of Experimental Botany, 2004, 55(398): 803-813.
[65]  Piccolo A, Nardi S, Concheri G. Structural characteristics of humic substances as related to nitrate uptake and growth regulation in plant systems[J]. Soil Biology and Biochemistry, 1992, 24(4): 373-380.
[66]  Albuzio A, Ferrari G, Nardi S. Effects of humic substances on nitrate uptake and assimilation in barley seedlings[J]. Canadian Journal of Soil Science, 1986, 66: 731-736.
[67]  Rao K P, Rains D W. Nitrate absorption by barley[J]. Plant Physiology, 1976, 57: 55-58.
[68]  Touraine B, Muller B, Grignon C. Effect of phloem-translocated malate on NO-3 uptake by roots of intact soybean plants[J]. Plant Physiology, 1992, 99: 1118-1123.
[69]  Ward M R, Aslam M, Huffaker R C. Enhancement of nitrate uptake and growth of barley seedlings by calcium under saline conditions[J]. Plant Physiology, 1986, 80: 520-524.
[70]  Delhon P, Gojon A, Tillard P, Passama L. Diurnal regulation of NO-3 uptake in soybean plants I. Changes in NO-3 influx, efflux, and N utilization in the plant during the day/night cycle[J]. Journal of Experimental Botany, 1995, 46(10): 1585-1594.
[71]  周诗毅,高轩,何光源,Cram W J. 不同糖类对水稻硝酸盐吸收的影响[J].华中师范大学学报(自然科学版), 2009, 43(1): 124-127.
[72]  郑冬超, 夏新莉, 尹伟伦. 生长素促进拟南芥AtNRT1.1基因表达增强硝酸盐吸收[J]. 北京林业大学学报, 2013, 35(2): 80-85.
[73]  Campbell S J. Uptake of ammonium by four species of macroalgae in Port Phillip Bay, Victoria, Australia[J]. Marine and Freshwater Research, 1999, 50(6): 515-522.
[74]  Wanek W, Poertl K. Short-term 15N uptake kinetics and nitrogen nutrition of bryophytes in a lowland rainforest, Costa Rica[J]. Functional Plant Biology, 2008, 35(1): 51-62.
[75]  Kanno Y, Hanada A, Chiba Y et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9653-9658.
[76]  Chiu C C, Lin C S, Hsia A P et al. Mutation of a nitrate transporter, AtNRT1: 4, results in a reduced petiole nitrate content and altered leaf development[J]. Plant and Cell Physiology, 2004, 45: 1139-1148.
[77]  Lin S H, Kuo H F, Canivence G et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport[J]. The Plant Cell, 2008, 20: 2514-2528.
[78]  Almagro A, Lin S H, Tsay Y F. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development[J]. The Plant Cell, 2008, 20: 3289-3299.
[79]  Mendoza-Cózatl D G, Jobe T O, Hauser F, Schroeder J I. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic[J]. Current Opinion in Plant Biology, 2011, 14: 554-562.
[80]  Li J Y, Fu Y L, Pike S M et al. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J]. The Plant Cell, 2010, 22: 1633-1646.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133