Prietzel J, Rehfuess K E, Stetter U, Pretzsch H. Changes of soil chemistry, stand nutrition, and stand growth at two Scots pine(Pinus sylvestris L.) sites in Central Europe during 40 years after fertilization, liming, and lupine introduction[J]. European Journal of Forest Research, 2008, 127(1): 43-61.
Kabata-Pendias A, Pendias H. Trace elements in plants and soils[M]. Boca Raton, Florida: The Chemical Rubber Company Press,1984.
[16]
Cakmak I, Marschner H. Enhanced superoxide radical production in roots of zinc-deficient plants[J]. Journal of Experimental Botany, 1988, 39(10): 1449-1460.
[17]
Mclean E O. Calcium levels and availabilities in soils[J]. Commun Soil Science and Plant Analysis, 1975, 6, 219-232.
Zhang M K, He Z L, Calvert D, Stoffella P. Extractability and mobility of copper and zinc accumulated in sandy soils[J]. Pedosphere,2006, 16(1): 43-49.
Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?[J]. Plant and Soil, 2008, 302(1): 1-17.
[26]
Ma G, Jin Y, Li Y et al. Iron and zinc deficiencies in China: what is a feasible and cost-effective strategy?[J]. Public Health Nutrition, 2008, 11(6): 632-638.
Alloway B. Soil factors associated with zinc deficiency in crops and humans[J]. Environmental Geochemistry and Health, 2009, 31(5): 537-548.
[30]
Gonzalez D, Obrador A, Lopez-Valdivia L, Alvarez J M. Effect of zinc source applied to soils on its availability to Navy Bean[J]. Soil Science Society of America Journal, 2008, 72(3): 641-649.
[31]
Wang J, Mao H, Zhao H et al. Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau, China[J]. Field Crops Research, 2012, 135: 89-96.