全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

根瘤菌与促生菌双接种对大豆生长和土壤酶活的影响

DOI: 10.11674/zwyf.2015.0311, PP. 644-654

Keywords: 慢生大豆根瘤菌,胶质类芽孢杆菌,复合双接种,大豆,占瘤率,土壤酶活

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】慢生大豆根瘤菌和胶质类芽孢杆菌单一菌株固氮或促生效果及机理已有较多研究,但两者双接种对作物的作用和增产机理尚未有所报道。本研究以慢生大豆根瘤菌5136与胶质类芽孢杆菌3016为研究对象,通过田间小区试验研究根瘤菌与促生菌不同施用模式对大豆生长和土壤酶活的影响,以期为开发新型高效复合菌剂提供理论依据。【方法】试验设对照(T1)、接种胶质类芽孢杆菌3016菌剂(T2)、接种慢生大豆根瘤菌5136菌剂(T3),胶质类芽孢杆菌3016和慢生大豆根瘤菌5136双接种(T4)和常规施肥(T5)5个处理,分别于大豆不同生育期调查大豆的农艺性状和结瘤状况,测定土壤酶活性,用BOX-PCR技术监测慢生大豆根瘤菌5136的占瘤率。【结果】1)在大豆成熟期,双接种(T4)处理的大豆单株分枝数、单株粒数、收获指数和产量均为最高,分别比T1高11.3%、9.7%、41.0%和9.3%,且单株空荚数最低,比T1降低了44.0%。2)在花荚期,双接种(T4)处理的占瘤率为25.4%,比T3处理高8.0%,且单株根瘤数和单株根瘤干重均为最高,分别比T1高41.6%和47.1%;说明双接种处理下,胶质类芽孢杆菌3016能够促进慢生大豆根瘤菌5136结瘤固氮。3)接种微生物菌剂均可不同程度地提高土壤酶活性,以双接种(T4)处理的效果最为显著,在大豆成熟期,土壤过氧化氢酶、脲酶和蔗糖酶活性均为最高,分别比对照高12.9%、8.9%和9.4%。4)相关性分析表明,土壤酶活性与大豆收获指数显著正相关或极显著正相关(P<0.01或P<0.05),其中过氧化氢酶与产量显著正相关;单株根瘤数和单株根瘤干重均与收获指数和蔗糖酶活性呈极显著正相关,与产量呈显著正相关。【结论】慢生大豆根瘤菌和胶质类芽孢杆菌双接种可以促进大豆生长,显著增加大豆的单株分枝数、单株粒数、收获指数和占瘤率,降低单株空荚数,增加大豆产量,同时可显著提高相关土壤酶活性,是一种节本增效的农艺措施。

References

[1]  农业部市场与经济信息司. 2011年中国农产品市场分析报告[M]. 北京: 中国农业出版社, 2011.
[2]  Piromyou P, Buranabanyat B, Tantasawat et al. Effect of plant growth promoting rhizobacteria(PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand[J]. European Journal Soil Biololgy, 2011, 47(1): 44-54.
[3]  Beneduzi A, Peres D, Vargas L K et al. Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil[J]. Applied Soil Ecology, 2008, 39: 311-320.
[4]  Hayat R, Ali S, Amara U et al. Soil beneficial bacteria and their role in plant growth promotion: A review[J]. Annals of Microbiology, 2010, 60: 579-598.
[5]  Elkoca E, Kantar F, Sahin F. Influence of nitrogen fixing and phosphorus solubilising bacteria on the nodulation, plant growth, and yield of chickpea[J]. Journal of Plant Nutrition, 2008, 31: 157-171.
[6]  Atieno M, Herrmann L, Okalebo R et al. Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum [J]. World Journal of Microbiology& Biotechnology, 2012, 28: 2541-2550.
[7]  韩光, 张磊, 邱勤, 等. 复合型PGPR和苜蓿对新垦地土壤培肥效果研究 [J]. 土壤学报, 2011, 48(2): 405-411.
[8]  Camacho M, Santamarta C, Temprano F et al. Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L.[J]. Canadian Journal of Microbiology, 2001, 47: 1058-1062.
[9]  Ma M C, Wang Z Y, Li L et al. Complete genome sequence of Paenibacillus mucilaginosus 3016, a bacterium functional as microbial fertilizer[J]. Journal of Bacteriology, 2012, 194(10): 2777-2778.
[10]  王璇, 马鸣超, 关大伟, 等. 胶质类芽胞杆菌PCR快速检测方法[J]. 微生物学报, 2011, 51(11): 1485-1493.
[11]  常文智, 马鸣超, 李力,等. 施用胶质类芽孢杆菌对土壤生物活性和花生产量的影响[J]. 中国土壤与肥料, 2014,(1): 84-89.
[12]  Guan D W, Ma M C, Ma Z Y et al. Analysis of two Bradyrhizobium japonicum strains with different symbiotic matching for nodulation by primary proteomic[J]. Journal of Integrative Agriculture, 2012, 11(8): 1377-1383.
[13]  Wu J G, Wang J F, Zhang X H et al. A gyrB-targeted PCR for rapid identification of Paenibacillus mucilaginosus [J]. Applied Microbiology and Biotechnology, 2010, 87: 739-747.
[14]  Li J, Xiao W L, Ma M C et al. Proteomic study on two Bradyrhizobium Japonicum strains with different competitiveness for nodulation[J]. Journal of Integrative Agriculture, 2011, 10(7): 1072-1079.
[15]  Petric I, Philippot L, Abbate C et al. Inter-laboratory evaluation of the ISO standard 11063 "Soil quality-method to directly extract DNA from soil samples"[J]. Journal of Microbiological Methods, 2011, 84(3): 454-460.
[16]  Versalovic J, Koeuth T, Lupski J R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes[J]. Nucleic Acids Research, 1991, 19: 6823-6831.
[17]  关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. 274-340.
[18]  李俊, 沈德龙, 林先贵. 农业微生物研究与产业化进展[M]. 北京: 科学出版社, 2011. 49-50.
[19]  Sheng X F, He L Y. Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat[J]. Canadian Journal of Microbiology, 2006, 52: 66-72.
[20]  Basak B B, Biswas D R. Influence of potassium solubilizing microorganism(Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass(Sorghum vulgare Pers.) grown under two Alfisols[J]. Plant and Soil, 2009, 317: 235-255.
[21]  江木兰, 张学江, 徐巧珍, 等. 大豆-根瘤菌的固氮作用[J]. 中国油料作物学报, 2003, 25(1): 50-54.
[22]  孟庆英, 张春峰, 于忠和, 等. 根瘤茵对大豆根际土壤微生物及大豆农艺性状的影响[J]. 大豆科学, 2012, 31(3): 498-500.
[23]  吴洪生, 郭勋斌, 刘怀阿, 等. 钾细菌制剂在花生上的应用研究[J]. 广西农业生物科学, 2003, 22(2): 119-121.
[24]  You Y M, Wang J, Huang X M et al. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover[J]. Ecology and Evolution, 2014, 4(5): 1-15.
[25]  Baldrian P. Microbial enzyme-catalyzed processes in soils and their analysis[J]. Plant Soil and Environment, 2009, 55(9): 370-378.
[26]  Cusack D F, Silver W L, Torn M S et al. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests[J]. Ecology, 2011, 92: 621-632.
[27]  黄继川, 彭智平, 于俊红, 等. 施用玉米秸秆堆肥对盆栽芥菜土壤酶活性和微生物的影响[J]. 植物与营养肥料学报, 2010, 16(2): 348-353.
[28]  刘恩科, 赵秉强, 李秀英, 等. 长期施肥对土壤微生物量及土壤酶活性的影响[J]. 植物生态学报, 2008, 32(1): 176-182.
[29]  严君, 韩晓增, 王树起, 等. 不同形态氮素对种植大豆土壤中微生物数量及酶活性的影响[J]. 植物营养与肥料学报, 2010,16(2): 341-347.
[30]  曹丹, 宗良纲, 肖峻, 等. 生物肥对有机黄瓜生长及土壤生物学特性的影响[J]. 应用生态学报, 2010, 21(10): 2587-2592.
[31]  杜广红, 周晓琳, 马鸣超, 等. 不同施肥处理对土壤生物活性和作物产量的影响[J]. 中国土壤与肥料, 2012,(5): 22-26.
[32]  Dick R P, Rasmussen P E, Kerle E A. Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system[J]. Biology and Fertility of Soils, 1988, 6: 159-164

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133