全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

长期无机有机肥配施对红壤性水稻土微生物群落多样性及酶活性的影响

DOI: 10.11674/zwyf.2015.0310, PP. 632-643

Keywords: 微生物群落结构,多样性,酶活性,红壤水稻土,长期施肥

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】长期有机与无机肥配合施用是促进农田生产力和土壤有机碳固定的重要技术途径。本文以江西省红壤研究所长期不同施肥试验田的表土(0—15cm)为对象,探讨不同施肥措施对土壤微生物群落多样性和酶活性的影响。【方法】在水稻收获后,采集表土壤样品,提取土壤总DNA。采用聚合酶链反应结合变性梯度凝胶电泳(PCR-DGGE)的方法研究土壤微生物的群落结构多样性,并结合克隆测序研究土壤微生物的群落组成;用实时荧光定量PCR(qPCR)的方法研究土壤微生物的丰度。土壤细菌定量和群落结构分析的分子标靶基因分别为16SrRNA基因V3区和V6区片段,土壤真菌定量和群落结构分析的标靶基因均为18SrRNA基因。DGGE分析采用8%的聚丙烯酰胺凝胶分离细菌和真菌,所用变性梯度分别为35%~65%和20%~40%。同时采用荧光微孔板检测技术测定土壤几丁质酶、α-葡萄糖苷酶、β-葡萄糖苷酶、纤维素酶、酸性磷酸单脂酶和木聚糖酶活性;用紫外分光光度计法测定土壤过氧化物酶活性。【结果】PCR-DGGE分析表明,与不施肥对照(CK)相比,有机无机肥配施(NPKM),土壤细菌的香农指数和丰富度指数显著增大,而土壤真菌的香农指数和丰富度指数在不同施肥处理间无显著差异。DGGE图谱聚类分析显示,NPKM处理的土壤细菌和真菌的群落结构显著区别于其他3个处理。后续的切胶测序得出,土壤细菌分属于Chloroflexi(绿弯菌门),Proteobacteria(变形菌门)和Firmicutes(厚壁菌门);NPKM处理下隶属于Clostridum(梭菌属)和Anaerolineaceae(厌氧绳菌科)的两类细菌显著增加。土壤真菌主要分属于Basidiomycota(担子菌门)和Ascomycota(子囊菌门),这些真菌条带在DGGE图谱上的分布不同处理间均无明显的规律性,因而不同处理间真菌的群落分布未出现较清晰的变化。qPCR的结果显示,土壤细菌和真菌拷贝数在不同处理间无显著差异。土壤酶的检测结果表明,与CK相比,单施氮肥(N)处理的土壤几丁质酶活性显著提高,常规氮磷钾处理(NPK)处理的几丁质酶和α-葡萄糖苷酶活性显著增强,NPKM处理提高了土壤几丁质酶、纤维素酶和过氧化物酶活性;酸性磷酸单酯酶和木聚糖酶活性在各处理间无显著差异。归一化酶活性值,NPKM处理显著高于CK和其他施肥处理。【结论】长期有机无机肥配施可显著提高土壤细菌多样性,并改变土壤细菌和真菌的群落结构,提高土壤酶活性,因而提高了农田生态系统的生产力并对生态系统健康有改善作用。

References

[1]  Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627.
[2]  Pan G, Smith P, Pan W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agriculture, Ecosystems & Environment, 2009, 129(1): 344-348.
[3]  Wang C J, Pan G X, Tian Y G et al. Changes in cropland topsoil organic carbon with different fertilizations under long-term agro-ecosystem experiments across mainland China[J]. Science China Life Sciences, 2010, 53(7): 858-867.
[4]  张平究, 李恋卿, 潘根兴, 张俊伟. 长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化[J]. 生态学报, 2005, 24(12): 2818-2824.
[5]  He J Z, Zheng Y, Chen C R et al. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches[J]. Journal of Soils and Sediments, 2008, 8(5): 349-358.
[6]  Shen J P, Zhang L M, Guo J F et al. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China[J]. Applied Soil Ecology, 2010, 46(1): 119-124.
[7]  魏巍, 许艳丽, 朱琳, 等. 长期施肥对黑土农田土壤微生物群落的影响[J]. 土壤学报, 2013, 50(2): 372-380.
[8]  Kennedy A C. Bacterial diversity in agroecosystems[J]. Agriculture, Ecosystems & Environment, 1999, 74(1): 65-76.
[9]  Dick R P, Pankhurst C, Doube B M et al. Soil enzyme activities as integrative indicators of soil health[J]. Biological Indicators of Soil Health, 1997: 121-156.
[10]  颜慧, 钟文辉, 李忠佩, 等. 长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响[J]. 应用生态学报, 2008, 19(1): 71-75.
[11]  白震, 张明, 闫颖, 等. 长期施肥对农田黑土微生物活力与群落结构的影响[J]. 土壤学报, 2009, 46(1): 107-116.
[12]  卜洪震, 王丽宏, 尤金成, 等. 长期施肥管理对红壤稻田土壤微生物量碳和微生物多样性的影响[J]. 中国农业科学, 2010, 43(16): 3340-3347.
[13]  Bhattacharyya P, Chakrabarti K, Chakraborty A. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure[J]. Chemosphere, 2005, 60(3): 310-318.
[14]  刘骅, 林英华, 张云舒, 等. 长期施肥对灰漠土生物群落和酶活性的影响[J]. 生态学报, 2008, 28(8): 3898-3904.
[15]  李晨华, 贾仲君, 唐立松, 等. 不同施肥模式对绿洲农田土壤微生物群落丰度与酶活性的影响[J]. 土壤学报, 2012, 49(3): 567-574.
[16]  林天, 何园球, 李成亮, 等. 红壤旱地中土壤酶对长期施肥的响应[J]. 土壤学报, 2005, 42(4): 682-686.
[17]  和文祥, 谭向平, 王旭东, 等. 土壤总体酶活性指标的初步研究[J]. 土壤学报, 2010(6): 1232-1236.
[18]  靳振江, 邰继承, 潘根兴, 等. 荆江地区湿地与稻田有机碳, 微生物多样性及土壤酶活性的比较[J]. 中国农业科学, 2012, 45(18): 3773-3781.
[19]  龚子同. 中国土壤系统分类: 理论·方法·实践[M]. 北京: 科学出版社, 1999.
[20]  李辉信, 袁颖红, 黄欠如, 等. 不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J]. 土壤学报, 2006, 43(3): 422-429.
[21]  鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[22]  Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology and Biochemistry, 2001, 33(12): 1633-1640.
[23]  Williams C J, Shingara E A, Yavitt J B. Phenol oxidase activity in peatlands in New York State: response to summer drought and peat type[J]. Wetlands, 2000, 20(2): 416-421.
[24]  Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3): 695-700.
[25]  May L A, Smiley B, Schmidt M G. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage[J]. Canadian Journal of Microbiology, 2001, 47(9): 829-841.
[26]  Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology[J]. Antonie van Leeuwenhoek, 1998, 73(1): 127-141.
[27]  DeForest J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA[J]. Soil Biology and Biochemistry, 2009, 41(6): 1180-1186.
[28]  Hedrick D B, Peacock A, Stephen J R et al. Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data[J]. Journal of Microbiological Methods, 2000, 41(3): 235-248.
[29]  林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010.
[30]  郑勇, 高勇生, 张丽梅, 等. 长期施肥对旱地红壤微生物和酶活性的影响[J]. 植物营养与肥料学报, 2008, 14(2): 316-321.
[31]  袁颖红, 李辉信, 黄欠如, 等. 长期施肥对红壤性水稻土活性碳的影响[J]. 生态环境, 2007, 16(2): 554-559.
[32]  Zheng J, Li L, Pan G et al. Potential aerobic C mineralization of a red earth paddy soil and its temperature dependence under long-term fertilizer treatments[J]. Soil Use and Management, 2012, 28(2): 185-193.
[33]  Zeller V, Bardgett R D, Tappeiner U. Site and management effects on soil microbial properties of subalpine meadows: a study of land abandonment along a north-south gradient in the European Alps[J]. Soil Biology and Biochemistry, 2001, 33(4): 639-649.
[34]  刘恩科, 赵秉强, 李秀英, 等. 不同施肥制度土壤微生物量碳氮变化及细菌群落 16S rDNA V3 片段 PCR 产物的 DGGE分析[J]. 生态学报, 2007, 27(3): 1079-1085.
[35]  袁红朝, 秦红灵, 刘守龙, 等. 长期施肥对红壤性水稻土细菌群落结构和数量的影响[J]. 中国农业科学, 2011, 44(22): 4610-4617.
[36]  Ge Y, Zhang J, Zhang L et al. Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China[J]. Journal of Soils and Sediments, 2008, 8(1): 43-50.
[37]  王霞, 陈哲, 袁红朝, 等. 应用 16S rDNA克隆文库技术研究长期稻草还田对水稻土细菌多样性的影响[J]. 生态学报, 2010, 30(13): 3865-3874.
[38]  崔文文. 规模化秸秆沼气反应器中微生物群落结构分析[D]. 北京: 中国农业科学院硕士学位论文, 2013.
[39]  Cardinali-Rezende J, Pereira Z L, Sanz J L et al. Bacterial and archaeal phylogenetic diversity associated with swine sludge from an anaerobic treatment lagoon[J]. World Journal of Microbiology and Biotechnology, 2012, 28(11): 3187-3195.
[40]  He J Z, Zheng Y, Chen C R et al. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches[J]. Journal of Soils and Sediments, 2008, 8(5): 349-358.
[41]  钱泽澍, 闵航. 沼气发酵微生物学[M]. 杭州: 浙江科学技术出版社, 1986.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133