全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cd2+诱导的镉敏感水稻突变体cadB-1叶片抗坏血酸循环的变化

DOI: 10.11674/zwyf.2015.0208, PP. 346-353

Keywords: 抗坏血酸-谷胱甘肽循环,镉敏感突变体,生长抑制,过氧化氢,水稻

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】镉离子(Cd2+)为非必需的微量元素,植物易从土壤中吸收并积累Cd2+,通过食物链进入人体内,对人类的健康造成重大威胁。为了阐明Cd2+诱导氧化胁制和抑制生长的机制,对Cd2+敏感水稻突变体(cadB-1)进行了水培试验。【方法】植物材料为水稻粳稻中花11(OryzasativaL.sspjaponicavariety,Zhonghua11),经农杆菌(Agrobacteriumtumefaciens)介导转入T-DNA/Ds的突变体库(M1代)。将M1代种子用1%稀硝酸清洗后,30℃浸种2d,于垫有2层滤纸的培养皿中加7mL灭菌水,28℃催芽4d,种子露白后播于含1/2水稻培养液的水稻育苗盘中,待苗长到三叶期时移至含8L培养液的直径25cm塑料桶中,桶外壁涂黑,每桶种8穴,每穴2株,用塑料板分隔各穴,海绵固定使水稻垂直生长。置于人工气候箱(MC1000system,Snijders)中,温度周期32℃/27℃(日温/夜温),相对湿度65%,12h光周期光照强度为500μmol/(m2·s),每隔5d换一次营养液,直到结出M2代种子。将中花11野生型与M2代突变体种子用以上同样方法培养,长到五叶期。以不加Cd2+作为对照,分别加入0.1、0.25、0.5和0.75mmol/LCd2+进行筛选,每种处理平行培养3桶,作为重复,共6001桶,每天定时观察。12d后,发现0.5mmol/LCd2+中的中花11野生型没有死亡,而M2代突变体出现部分死亡。按所在位置,选取表型最明显的株系命名为cadB-1。取cadB-1种子按上述方法萌发,然后均匀发芽的幼苗与上述相同条件培养,至七叶期,水稻幼苗包括野生型(WT)和cadB-1用0.5mmol/LCdCl2处理2、4、6、8和12d。【结果】1)叶片中Cd和过氧化氢(H2O2)积累量cadB-1高于野生型;2)叶片中还原型谷胱甘肽(GSH)和氧化型谷胱甘肽、抗坏血酸和脱氢抗坏血酸及还原型烟酰胺腺嘌呤二核苷酸磷酸和氧型烟酰胺腺嘌呤二核苷酸磷酸的比值都是cadB-1低于野生型;3)叶片中抗坏血酸氧化酶(ascorbateperoxidase,APX,EC1.11.1.11),还原型谷胱甘肽酶(glutathionereductase,GR,EC1.6.4.2),脱氢抗坏血酸还原酶(dehydroascorbatereductase,DHAR,EC1.8.5.1)和单脱氢抗坏血酸还原酶(monodehydroascorbatereductase,MDHAR,EC1.6.5.4)活性都是cadB-1低于野生型。【结论】cadB-1具有低水平的抗氧化剂和抗氧化酶活性。此外,cadB-1比WT积累更多的Cd从而产生更多的活性氧(reactiveoxygenspecies,ROS)。也就是说,与野生型相比,cadB-1更缺乏防御力来清除更多的活性氧,从而导致较低的生长势和对Cd的敏感。

References

[1]  He J Y, Zhu C, Ren Y F et al. Root morphology and cadmium uptake kinetics of the cadmium-sensitive rice mutant[J]. Biologia Plantarum, 2007, 51(4): 791-794.
[2]  Shen G M, Zhu C, Du Q Z, Shangguan L N. Ascorbate- Glutathione cycle alteration in a cadmium sensitive mutant from rice[J]. Rice Science, 2012, 19(3): 185-192
[3]  Shen G M, Zhu C, Shangguan L N, Du Q Z. The Cd-tolerant rice mutant cadH-5 is a high Cd accumulator and shows enhanced antioxidant activity[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(2): 309-318.
[4]  Shah K, Dubey R S. A 18 kDa cadmium inducible protein Complex: its isolation and characterisation from rice (Oryza sativa L.) seedlings[J]. Journal of Plant Physiology, 1998, 152(4): 448-454.
[5]  Jana S, Choudhuri M A. Glycolate metabolism of three submersed aquatic angiosperms during aging[J]. Aquatic Botany, 1982, 12: 345-354.
[6]  Law M Y, Charles S A, Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat[J]. Biochemistry Journal, 1983, 210: 899-903.
[7]  Anderson J V, Chevone B I, Hess J L. Seasonal variation in the antioxidant system of eastern white pine needles evidence for thermal dependence[J]. Plant Physiology, 1992, 98(2): 501-508.
[8]  Nisselbaum J S, Green S. A simple ultramicro method for determination of pyridine nucleotides in tissues[J]. Analytical Biochemistry, 1969, 27(2): 212-217.
[9]  Nakano Y, ASCda K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical[J]. Plant and Cell Physiology, 1987, 28(1): 131-140.
[10]  Dalton D A, Russell S A, Hanus F J et al. Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules[J]. Proceedings of the National Academy of Sciences, 1986, 83(11): 3811-3815.
[11]  Arrigoni O, Dipierro S, Borraccino G. Ascorbate free radical recuctase: A key enzyme of ascorbic acid system[J]. FEBS Letters, 1981, 125: 242-244.
[12]  Cho U, Seo N. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation[J]. Plant Science, 2005, 168(1): 113-120.
[13]  Chen C, Twito S, Miller G. New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds[J]. Plant Signal & Behavior, 2014, 9(12): e976489.
[14]  Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis[J]. Annual Review of Plant Biology, 2002, 53(1): 159-182.
[15]  Dalton D A, Russell S A, Hanus F J et al. Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules[J]. Proceedings of the National Academy of Sciences, 1986, 83(11): 3811-3815.
[16]  Ortega-VillASCnte C, Rellán-álvarez R, Del Campo F F et al. Cellular damage induced by cadmium and mercury in Medicago sativa [J]. Journal of Experimental Botany, 2005, 56(418): 2239-2251.
[17]  Jimenez A, Hernandez J A, Del Rio L A, Sevilla F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves[J]. Plant Physiology, 1997, 114(1): 275-284.
[18]  Liu Y G, Wang X, Zeng G M et al. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud[J]. Chemosphere, 2007, 69(1): 99-107.
[19]  Anjum A N, Gill S S, Gill R et al. Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes[J]. Protoplasma, 2014, 251(6): 1265-1283.
[20]  Li Z, Su D, Lei B et al. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant[J]. Journal of Plant Physiology, 2014, 176(25): 1-15.
[21]  Chaparzadeh N D, Amico M L, Khavari-Nejad R A et al. Antioxidative responses of Calendula officinalis under salinity conditions[J]. Plant Physiology and Biochemistry, 2004, 42(9): 695-701.
[22]  Kuzniak E. Maria S. Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected byBotrytis cinerea[J]. Plant Science, 2001,160(4): 723-731.
[23]  Kuo M C, Kao C H. Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant rice (Oryza sativa L.) seedlings[J]. Botany Bulletin of Academy Sinica, 2004, 45: 91-299.
[24]  Srivastava S, Tripathi R D, Dwivedi U N. Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa-An angiospermic parasite[J]. Journal of Plant Physiology, 2004, 161(6): 665-674.
[25]  Monrás J P, Collao B, Molina-Quiroz R C, Pradenas G A et al. Microarray analysis of the Escherichia coli response to CdTe-GSH Quantum Dots: understanding the bacterial toxicity of semiconductor nanoparticles[J]. BMC Genomics. 2014,15(1): 1099.
[26]  林冬, 朱诚, 孙宗修. 镉敏感水稻突变体在镉胁迫下活性氧代谢的变化[J]. 环境科学, 2006, 27(3): 561-566.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133