全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低产水稻土改良与管理研究策略

DOI: 10.11674/zwyf.2015.0227, PP. 509-516

Keywords: 低产水稻土,改良,策略

Full-Text   Cite this paper   Add to My Lib

Abstract:

我国耕地后备资源极端缺乏,改良低产田是提高粮食产量的重要途径。低产水稻土作为低产田的重要组成部分,相关肥力特征及其改良技术研究比较零散,缺乏系统科学的调控管理策略。本文从低产水稻土类型、新的改良研究方法角度,探索可能的技术突破。基于农业部统计数据,因环境条件不良或土壤自身存在障碍因素,全国约有7.67×106hm2低产水稻土。按其主导成因,低产水稻土可分为冷潜型、粘结型、沉板型、毒质型四类。土壤质量评价是低产水稻土研究的重要方面,其评价方法主要包括土壤质量动力学法、土壤质量综合评分法、多变量指标克立格法、土壤相对质量评价法,现已发展了基于GIS的区域尺度水稻土质量评价方法,以及基于土壤生物学性状的质量评价方法。低产水稻土改良研究更多关注新技术和新方法,稳定性同位素探针技术、傅里叶变换红外光谱法(FTIR)和固相交叉极化魔角自旋13C核磁共振(CPMS13C-NMR)波谱技术的应用,将土壤有机碳的微团聚体分布、腐殖质的转化及其与土壤矿物结合机制深入到微观水平;同时高通量测序、土壤宏基因组学、宏转录组学等方法将相关研究推向分子水平。低产水稻土改良与管理的技术主要涉及到冷潜型、粘结型、沉板型、毒质型四大类低产水稻土的改良技术,基于产量反应和农学效率的推荐施肥方法是水稻土养分管理方法的重要发展方向。1)在低产水稻土质量评价方面,未来要结合不同低产类型的障碍因素开展个性化的土壤质量评价,如白土的质地和耕层厚度,加强引入土壤生物学指标进行土壤质量评价研究。2)在低产水稻土改良方面,要研究稻田障碍层次的形成机理与调控途径;研究其他低产类型如新垦水稻土、盐渍化水稻土、石灰化水稻土和污染水稻土的改良技术;研究长期改良措施对不同粒级团聚体腐殖质结构、酶类、微生物多样性和功能基因的影响。3)在低产水稻土管理方面,着重研究秸秆还田技术、推荐施肥技术、抗逆品种技术、群体控制技术。

References

[1]  李庆逵. 中国水稻土[M]. 北京: 科学出版社, 1992.
[2]  中国农业年鉴编委会. 中国农业统计年鉴[M]. 北京: 中国农业出版社, 2012.
[3]  NY/T 309-1996. 全国耕地类型区、耕地地力等级划分[S].
[4]  张琳, 张凤荣, 姜广辉, 等. 我国中低产田改造的粮食增产潜力与粮食安全保障[J]. 农业现代化研究, 2005, 26 (1): 22-25.
[5]  龚子同, 张效朴. 我国水稻土资源特点及低产水稻土的增产潜力[J]. 农业现代化研究, 1988, 3: 33-36.
[6]  龚子同, 韦启璠, 龚高实. 石灰化水稻土的形成[J]. 土壤学报, 1988, 25(1): 1-12.
[7]  Xiao Z H. Principal types of low yield paddy soil in China[A]. Institute of Soil Science. Academia Sinica Proceedings of symposium in paddy soil[M]. Science Press, Beijing and Springer-Verlag, Berlin, 1981. 151-159.
[8]  臧小平, 张承林, 孙光明, 等. 酸性硫酸盐土壤上直接施用磷矿粉对水稻生长的影响[J]. 热带作物学报, 2002, 23(4): 89-96.
[9]  何春梅, 李昱, 李清华, 等. 咸酸田的形成、特性及可持续利用技术与对策[J]. 广西农学报, 2011, 26(6): 31-36.
[10]  Obade V P, Lal R. Assessing land cover and soil quality by remote sensing and geographical information systems (GIS)[J]. Catena, 2014, 104: 77-92.
[11]  Gomez-Alvarez V, Teal T K, Schmidt T M. Systematic artifacts in metagenomes from complex microbial communities[J]. ISME Journal, 2009, 3: 1314-1317.
[12]  Ikeda S, Sasaki K, Okubo T et al. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions[J]. Microbes and Environments, 2014, 29: 50-59.
[13]  de Menezes A, Clipson N, Doyle E. Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil[J]. Environmental Microbiology, 2012, 14: 2577-2588.
[14]  Murase J, Shibata M, Lee C G et al. Incorporation of plant residue-derived carbon into the microeukaryotic community in a rice field soil revealed by DNA stable-isotope probing[J]. Fems Microbiology Ecology, 2012, 79: 371-379.
[15]  Espana M, Rasche F, Kandeler E, et al. Identification of active bacteria involved in decomposition of complex maize and soybean residues in a tropical Vertisol using15N-DNA stable isotope probing[J]. Pedobiologia, 2011, 54: 187-193.
[16]  Spaccini R, Piccolo A, Haberhauer G et al. Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by13C distribution and CPMAS-NMR spectra[J]. European Journal of Soil Science, 2000, 51: 583-594.
[17]  罗璐, 周萍, 童成立, 等. 长期施肥措施下稻田土壤有机质稳定性研究[J]. 环境科学, 2013, 34: 692-697.
[18]  熊明彪, 舒芬, 宋光煜, 等. 南方丘陵区土壤潜育化的发生与生态环境建设[J]. 土壤与环境, 2002, 11(2): 197-201.
[19]  董稳军, 徐培智, 张仁陟, 等. 土壤改良剂对冷浸田土壤特性和水稻群体质量的影响[J]. 中国生态农业学报, 2013, 21(7): 810-816.
[20]  徐富贤, 熊洪, 朱永川, 等. 川东南冬水田杂交中稻进一步高产的栽培策略[J]. 作物学报, 2007, 33(6): 1004-1009.
[21]  紫娟娟, 廖敏, 徐培智, 等. 我国主要低产水稻冷浸田养分障碍因子特征分析[J]. 水土保持学报, 2012, 26(2): 284-288.
[22]  曹芬芳, 曾燕, 夏冰, 等. 冷浸田双季稻品种和栽培方式比较研究[J]. 作物研究, 2014, 28(1): 1-6.
[23]  董稳军, 张仁陟, 黄旭, 等. 明沟排水对冷浸田土壤理化性质及产量的影响[J]. 灌溉排水学报, 2014, 33(2): 114-116.
[24]  冀建华, 刘秀梅, 李祖章, 等. 长期施肥对黄泥田碳和氮及氮素利用的影响[J]. 中国农业科学, 2011, 44(12): 2484-2494.
[25]  董春华, 高菊生, 曾希柏, 等. 长期有机无机肥配施下红壤性稻田水稻产量及土壤有机碳变化特征[J]. 植物营养与肥料学报, 2014, 20(2): 336-345.
[26]  王飞, 林城, 林新坚, 等. 连续翻压紫云英对福建单季稻产量与化肥氮素吸收、分配及残留的影响[J]. 植物营养与肥料学报, 2014, 20(4): 896-904.
[27]  Liu G M, Yang J S, Yao R J. Electrical conductivity in soil extracts: Chemical factors and their intensity[J]. Pedosphere, 2006, 16(1): 100-107.
[28]  刘广明, 彭世彰, 杨劲松. 不同控制灌溉方式下稻田土壤盐分动态变化研究[J]. 农业工程学报, 2007, 23(7): 86-89.
[29]  Peng J L, Lei W J, Huang J C et al. Effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil[J]. Agricultural Science and Technology, 2013, 14: 905-910.
[30]  Liang Y C, Wong J W C, Wei L. Silicon mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil[J]. Chemosphere, 2005, 58: 475-483.
[31]  周歆, 周航, 曾敏, 等. 石灰石和海泡石组配对水稻糙米重金属积累的影响[J]. 土壤学报, 2014, 51(3): 555-563.
[32]  Yang X C, Lin L, Chen M Y et al. A nonpathogenic Fusarium oxysporum strain enchances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance[J]. Journal of Hazardous Materials, 2012, 229: 361-370.
[33]  Bolan N, Kunhikrishnan A, Thangarajan R et al. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166.
[34]  何萍, 金继运, Pampolino M F et al. 基于作物产量反应和农学效率的推荐施肥方法[J]. 植物营养与肥料学报, 2012, 18(2): 499-505.
[35]  Chuan L M, He P, Jin J Y et al. Estimating nutrient uptake requirements for wheat in China[J]. Field Crops Research, 2013, 146: 96-104.
[36]  Bhardwaj A K, Jasrotiaa P, Hamiltona S K et al. Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity[J]. Agriculture Ecosystems & Environment, 2011, 140: 419-429.
[37]  Moscatelli M C, Lagomarsino A, Garzillo A M V et al. β-Glucosidase kinetic parameters as indicators of soil quality under conventional and organic cropping systems applying two analytical approaches[J]. Ecological Indicators, 2012, 13: 322-327.
[38]  谢坚, 郑圣先, 杨曾平, 等. 湖南双季稻种植区不同生产力水稻土质量综合评价[J]. 中国农业科学, 2010, 43(23): 4840-4851.
[39]  曹志洪, 周健民, 等. 中国土壤质量[M]. 北京: 科学出版社, 2008.
[40]  Yao R J, Yang J S, Gao P et al. Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area[J]. Soil & Tillage Research, 2013, 128: 137-148.
[41]  Boluda R, Roca-Pérez L, Iranzo M et al. Determination of enzymatic activities using a miniaturized system as a rapid method to assess soil quality[J]. European Journal of Soil Science, 2014, 65: 286-294.
[42]  Qi Y B, Darilek J L, Huang B et al. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China[J]. Geoderma, 2009, 149: 325-334.
[43]  Lima A C R, Brussaard L, Totola M R et al. A function evaluation of three indicator sets for assessing soil quality[J]. Applied Soil Ecology, 2013, 64: 194-200.
[44]  Li P, Zhang T L, Wang X X et al. Development of biological soil quality indicator system for subtropical China[J]. Soil & Tillage Research, 2013, 126: 112-118
[45]  Liu Z J, Zhou W, Shen J B et al. Soil quality assessment of yellow clayey paddy soils with different productivity[J]. Biology and Fertility of Soils, 2014, 50: 537-548.
[46]  Liu Z J, Zhou W, Shen J B et al. Soil quality of acid sulfate paddy soils with different productivities in Guangdong province[J]. Journal of Integrative Agriculture, 2014, 13: 177-186.
[47]  Liu Z J, Zhou W, Shen J B et al. Soil quality assessment of Albic soils with different productivities for eastern China[J]. Soil & Tillage Research, 2014, 140: 74-81.
[48]  Bastida F, Zsolnay A, Hernández T et al. Past, present and future of soil quality indices: A biological perspective[J]. Geoderma, 2008, 147: 159-171.
[49]  Aziz I, Mahmood T, Islam K R. Effect of long term no-tillage and conventional tillage practices on soil quality[J]. Soil & Tillage Research, 2013, 131: 28-35.
[50]  Romaniuk R, Giuffre L, Costantini A et al. Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems[J]. Ecological Indicators, 2011, 11: 1345-1353.
[51]  王建红, 曹凯, 张贤. 紫云英翻压量对单季晚稻养分吸收和产量的影响[J]. 植物营养与肥料学报, 2014, 20(1): 156-163.
[52]  王飞, 林诚, 李清华, 等. 长期不同施肥对南方黄泥田水稻籽粒品质性状与土壤肥力因子的影响[J]. 植物营养与肥料学报, 2011, 17(2): 283-290.
[53]  杨帆, 李荣, 崔勇, 等. 我国南方秸秆还田的培肥增产效应[J]. 中国土壤与肥料, 2011, 1: 10-14.
[54]  王培燕, 黄 标, 王 虹, 等. 太湖地区水耕人为土中漂白层的成因探讨[J]. 土壤学报, 2014, 51(3): 470-481.
[55]  汪建飞, 李粉茹, 金德胜. 黄白土的持水特性及施用有机物料的效应研究[J]. 水土保持学报, 2002, 16(2): 133-135.
[56]  吴萍萍, 汪家嘉, 李录久. 不同耕作与施肥方式下白土水稻产量及养分吸收量[J]. 植物营养与肥料学报, 2014, 20(3): 754-760.
[57]  李伯欣, 徐培智, 周柏权, 等. 适宜于改良后酸性田和反酸田的水稻品种筛选试验[J]. 广东农业科学, 2011, 12: 13-14.
[58]  易琼, 杨少海, 黄巧义, 等. 改良剂对反酸田土壤性质与水稻产量的影响[J]. 土壤学报, 2014, 51(1): 176-183.
[59]  Xu X P, He P, Pampolino M F et al. Nutrient requirements for maize in China based on QUEFTS analysis[J]. Field Crops Research, 2013, 150: 115-125.
[60]  Xu X P, He P, Pampolino M F et al. Fertilizer recommendation for maize in China based on yield response and agronomic efficiency[J]. Field Crops Research, 2014, 157: 27-34.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133