全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大豆丛枝菌根共生结构和多聚磷累积双定位方法

DOI: 10.11674/zwyf.2015.0123, PP. 211-216

Keywords: 大豆,丛枝菌根真菌,丛枝菌根共生结构,多聚磷,荧光染料

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】多聚磷是丛枝菌根内磷的主要贮存形式,定性、定量观察多聚磷对于解析菌根中磷代谢具有重要意义。随着植物体内越来越多的参与菌根真菌与寄主植物之间营养交换过程的基因被鉴定,迫切需要进一步提高根内菌根共生结构和多聚磷累积的染色和定位分析技术。【方法】本研究利用丛枝菌根真菌Glomusmosseae侵染的大豆植株,采集新鲜根样制片,一部分薄根片利用低浓度荧光染料麦胚凝集素,室温染色30min,在波长488nm的蓝光激发下使用荧光显微镜观察拍照;另一部分薄根片利用荧光染料4’,6-二脒基-2-苯基吲哚二盐酸盐(DAPI)进行染色,在波长405nm紫外光激发下观察并拍照;进一步取新鲜制备的薄根片,先后用以上两种荧光染料进行染色,分别在波长405nm和488nm的激发光下观察并拍照,完成了菌根共生结构和多聚磷的共定位。【结果】1)使用荧光染料麦胚凝集素,大豆丛枝菌根真菌侵染结构的荧光标记活性染色法,可以清晰地检测到大豆丛枝菌根中所有的共生结构,包括丛枝,泡囊和根内菌丝等。2)在丛枝菌根真菌侵染的根中,各种共生结构都呈现出黄色荧光,为DAPI与多聚磷结合在紫外光激发下的呈色。根段中部分细胞内的蓝白色斑点为DAPI与细胞核中DNA结合的显色结果。在含有成熟丛枝结构的细胞中,也可观察到大部分丛枝呈蓝白色,主要是丛枝膜质结构的呈色。因此,利用荧光染料4’,6-二脒基-2-苯基吲哚二盐酸盐染色法定位多聚磷,能很好地区分多聚磷酸盐、DNA和膜质。3)在以上研究的基础上,通过荧光光路的切换,可以同时观察到菌根共生结构和多聚磷的共定位。处于发育阶段的整个丛枝中多聚磷累积的亮黄色清晰可见。在成熟的丛枝中,由于膜质结构发达,对累积在丛枝结构中的多聚磷的染色观察产生了一定影响,导致仅仅局部的多聚磷累积清晰可见。【结论】本研究建立的大豆菌根共生结构与多聚磷累积的双定位分析系统,能够直观观察植物与丛枝菌根真菌的养分交换,清晰地对丛枝菌根共生结构中多聚磷的累积进行定位分析,可作为从组织和细胞水平研究菌根共生体的重要技术手段。

References

[1]  Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses[J]. Nature Reviews Microbiology, 2008, 6: 763-775.
[2]  Harrison M, van Buuren M. A phosphate transporter from the mycorrhizal fungus Glomus versiforme [J]. Nature, 1995, 378: 626-629.
[3]  Harrison M J, Dewbre G R, Liu J. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi[J]. The Plant Cell, 2002, 14(10): 2413-2429.
[4]  Paszkowski U, Kroken S, Roux C, Briggs S P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences, 2002, 99(20): 13324-13329.
[5]  Pumplin N, Harrison M. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis[J]. Plant Physiology, 2009, 151(2): 809-819.
[6]  Kobae Y, Tamura Y, Takai S et al. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean[J]. Plant and Cell Physiology, 2010, 51(9): 1411-1415.
[7]  Smith S E, Dickson S. Quantification of active vesicular-arbuscular mycorrhizal infection using image analysis and other techniques[J]. Australian Journal of Plant Physiology, 1991, 18(6): 637-648.
[8]  任世英, 肖天. 聚磷菌体内多聚物的染色方法[J]. 海洋科学, 2005, 29(1): 59-63.
[9]  Smolders G, van der Meij J, van Loosdrecht M et al. Model of the anaerobic metabolism of the biological phosphorus removal process stoichiometry and pH influence[J]. Biotechnology and Bioengineering, 1994, 43(6): 461-470.
[10]  Boddington C, Dodd J. Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora might be related to their life-cycle strategies[J]. New Phytologist, 1999, 142, 531-538.
[11]  Funamoto R, Saito K, Oyaizu H et al. Simultaneous in situ detection of alkaline phosphatase activity and polyphosphate in arbuscules within arbuscular mycorrhizal roots[J]. Functional Plant Biology, 2007, 34(9): 803-810.
[12]  Zhou J, Xie J N, Liao H, Wang X R. Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean[J]. Physiologia Plantarum, 2014, 150: 194-204.
[13]  Bonfante-Fasolo P, Faccio A, Perotto S, Schubert A. Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungus Glomus versiforme[J]. Mycological Research, 1990, 94(2): 157-165.
[14]  Tijssen J P F, Beekes H W, Steveninck J. Localization of polyphosphates in Saccharomyces fragilis, as revealed by 4, 6-diamidino-2-phenylindole fluorescence[J]. Biochimica et Biophysica Acta, 1982, 721(4): 394-398.
[15]  Aschar-Sobbi R, Abramov A, Diao C et al. High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach[J]. Journal of Fluorescence, 2008, 18: 859-866.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133