全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于自适应核密度估计理论的抗差状态估计

DOI: 10.13334/j.0258-8013.pcsee.2015.19.011, PP. 4937-4946

Keywords: 抗差状态估计,自适应核密度带宽,最优核带宽,带宽的约束条件,不良数据辨识

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对当前抗差状态估计存在的缺点,提出一种基于自适应核密度估计的电力系统抗差状态估计新算法。首先建立基于自适应核密度估计理论的电力系统状态估计新模型;进而提出该新模型核密度函数宽度的确定方法。为确定该新模型的自适应核密度带宽,基于概率密度估计的均方误差公式,结合电力系统状态各分量具有与局部量测强相关性的特点,即系统状态变量各分量与其直接量测的相关性明显强于所有非直接量测,推导新模型的状态变量分量的近似最优核带宽表达式;基于保证量测数据的冗余度、系统的可观性,及消除残差污染和残差淹没所导致的不良数据的漏辨识或正常数据的误辨识,提出新模型状态变量分量核密度带宽的约束条件,包括初始约束条件、修正约束条件及量测标准差约束条件;进而给出基于近似最优核密度带宽表达式及所有约束条件的核密度带宽综合确定方法。实际系统的应用表明:所建立的状态估计新模型,所推导的近似最优核函数带宽表达式,所提出的核密度带宽约束条件及核密度带宽综合确定方法是有效的。

References

[1]  Parzen E.On estimation of a probility density function and mode[J].Annals of Mathematical Statistics,1962,33(3):1065-1076.
[2]  Weifeng Liu,Puskal P.Pokharel,Jose C.Principecorrentropy:properties and applications in non-gaussian signal processing[J].IEEE Transactions on Signal Processing,2007,55(11):5286-5298.
[3]  Vladimiro Miranda,André Santos,Jorge Pereira.State estimation based on correntropy:a proof of concept[J].IEEE Transactions on Power Systems,2009,24(4):1888-1889.
[4]  吴文传,郭烨,张伯明.指数型目标函数电力系统抗差状态估计[J].中国电机工程学报,2011,31(4):67-71.Wu Wenchuan,Guo Ye,Zhang Boming.A robust state estimation method with exponential objective function[J].Proceedings of the CSEE,2011,31(4):67-71(in Chinese).
[5]  郭烨,张伯明,吴文传.指数型目标函数电力系统抗差状态估计的解法与性能分析[J].中国电机工程学报,2011,31(7):89-95.Guo Ye,Zhang Boming,Wu Wenchuan.Solution and performance analysis to a robust state estimation method with exponential objective function[J].Proceedings of the CSEE,2011,31(7):89-95(in Chinese).
[6]  Larry W.All of Nonparametric Statistics[M].New York:Springer,2010.
[7]  Van Kerm P.Adaptive kernel density estimation[J].Stata Journal,2003,3(2):148-156.
[8]  于尔铿.电力系统状态估计[M].北京:水利电力出版社,1985:1-2.Yu Erkeng.Power system state estimation[M].Beijing:China Water Power Press,1985:1-2(in Chinese).
[9]  相年德,王世缨,于尔铿.电力系统状态估计中的不良数据估计识别法,第一部分:理论和方法[J].清华大学学报:自然科学版,1979,19(4):1-16.Xiang Niande,Wang Shiying,Yu Erkeng.The estimationidentificationapproach of bad data in power system state estimation,part I:basic principles and solving method[J].Journal of Tsinghua University:Science and Technology,1979,19(4):1-16(in Chinese).
[10]  孙国强,卫志农,周封伟.改进迭代自组织数据分析法的不良数据辨识[J].中国电机工程学报,2006,26(11):162-166.Sun Guoqiang,Wei Zhinong,Zhou Fengwei.The application of ISODATA to bad data detection and identification based on genetic algorithms[J].Proceedings of the CSEE,1990,10(6):162-166(in Chinese).
[11]  Monticelli A.Multiple bad data identification for state estimation by combinatorial optimization[J].IEEE Trans. on Power Delivery,1986,PWRD-1(3):361-369.
[12]  Monticelli A,Garcia A.Reliable bad data processing for real-time state estimation[J].IEEE Trans. on Power Apparatus and Systems,1983,PAS-102(5):1126-1139.
[13]  Zhang B M,Lo K L.A recursive measurement error estimation identification method for bad data analysis in power system state estimation[J].IEEE Trans. on Power Systems,1991,PWRS-6(1):191-198.
[14]  Peter J.Huber,Robust Regression:Asymptotics,Conjectures and Monte Carlo[J].The Annals of Statistics,1973,1(5):799-821.
[15]  Handschin E,Schweppe F,Kohlas J,et al.Bad data analysis forpower system state estimation[J].IEEE Trans. on Power Apparatus and Systems,1975,PAS-94(2):329-337.
[16]  Hua Wei,H.Sasaki J.Kubokawa,R.Yokoyama.An Interior Point Method for Power System Weighted Nonlinear L1Norm Static State Estimation[J].IEEE Transactions on Power Systems,1998,13(2):617-623.
[17]  A.Abur and A.Gómez Expósito.Power system state estimation:theory and implementation[M].New York:Marcel Dekker,2004.
[18]  Mili L,Cheniae M G,Rousseeuw P J.Robust state estimation ofelectric power systems[J].IEEE Trans. on Circuits and Systems,I:Fundamental Theory and Applications,1994,41(5):349-358.
[19]  钱峰,龚庆武.基于IGG法的电力系统状态估计[J].电力系统自动化,2005,29(3):36-39.Qian F,Gong Q W.Power system state estimation based on IGG method[J].Automation of Electric Power System,2005,29(3):36-39(in Chinese).
[20]  G He,S Dong,J Qi,Y Wang.Robust state estimator based on maximum normal measurement rate[J].IEEE Transactions on Power Systems,2011,26(4):2058-2065.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133