全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于柔性多体动力学的风力发电机固有振动频率研究

DOI: 10.13334/j.0258-8013.pcsee.2014.11.012, PP. 1807-1814

Keywords: 水平轴,风力发电机,柔性多体动力学,刚体有限元法,振动,耦合

Full-Text   Cite this paper   Add to My Lib

Abstract:

水平轴风力发电机大型化、柔性化的发展趋势使得基于小变形假设的线性分析方法不再合理。大型风力机柔性叶片和塔架的耦合振动加剧,需采用整机模型对其进行分析。基于柔性多体动力学理论,采用刚体有限元方法建立了风力发电机的整机结构动力学模型,该模型不受几何变形量大小限制,能够对风力机在各种情况下的整机振动进行分析。模型结果与其他程序进行了对比,证实该文模型的精度比模态方法更高。研究了叶片和塔架在耦合与非耦合状态下整机的固有振动频率,结果表明:在整机状态下塔架和叶片的部分高阶频率发生了变化,系统中有新的耦合振动频率产生,这意味着用单个柔性部件的固有频率去评估整机的振动是不可靠的,对于大型风力机必须采用整机模型。

References

[1]  Lee D, Hodges D H, Patil J.Multi-flexible-body dynamic analysis of horizontal axis wind turbines[J].Wind Energy, 2001, 5(4):281-300.
[2]  Lee D, Hodges D H.Effect of configuration parameters on the response and stability of HAWT’s[C]//45th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, California, 2004:1-13.
[3]  Hodges D H.A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J].International Journal of Solids and Structures, 1990, 26(11):1253-1273.
[4]  Holierhoek J G.Aeroelasticity of large wind turbines[D].Delft:Technical University of Delft, 2008.
[5]  金鑫, 何玉林, 刘桦, 等.风力发电机耦合振动分析[J].振动与冲击, 2007, 26(8):144-147. Jin Xin, He Yulin, Liu Hua, et al.Coupled vibration analysis of wind turbine[J].Journal of Vibration and Shock, 2007, 26(8):144-147(in Chinese).
[6]  王建宏.风力发电机的柔性多体动力学研究[D].重庆:重庆大学, 2009. Wang Jianhong.Study on the dynamic of flexible multi-body of wind turbine[D].Chongqing:Chongqing University, 2009(in Chinese).
[7]  Wittbrodt E, Adamiec-Wójcik I, Wojciech S.Dynamics of flexible multibody systems: rigid finite element method[M].Berlin:Springer, 2006:1-82.
[8]  Wittbrodt E, Szczotka M, Wojciech S, et al.Rigid finite element method in analysis of dynamics of offshore structures[M].Berlin:Springer, 2013:45-111.
[9]  Meirovitch L.Elements of vibration analysis[M].New York:McGRAW-HILL, 1975:45-68.
[10]  Connelly J D, Huston R L.The dynamics of flexible multi-body systems:a finite segment approach—I. Theoretical aspects[J].Computers & Structures, 1994, 50(2):255-258.
[11]  Connelly J D, Huston R L.The dynamics of flexible multi-body systems:a finite segment approach—II. Example problems[J].Computers & Structures, 1994, 50(2):259-262.
[12]  Wojciech S, Adamiec-Wójcik I.Experimental and computational analysis of large amplitude vibrations of spatial viscoelastic beams[J].Acta Mechanica, 1994, 106(3):127-136.
[13]  Bir G S.User’s guide to BModes[R].Colorado:NREL, 2005.
[14]  Jonkman B J.TurbSim user’s guide[R].Colorado:NREL, 2009.
[15]  Schlecht B, Schulze T, Demtroder J.Simulation of torsional vibrations or multibody simulation-which technique does the wind power industry need for solving the present-day problems[C]//Proceedings of DETC’03, Chicago, 2003:1-8.
[16]  Mostafaeipour A.Productivity and development issues of global wind turbine industry[J].Renewable and Sustainable Energy Reviews, 2010, 14(3):1048-1058.
[17]  朱艺颖, 姚旭东.直驱式同步风力发电机组数模混合仿真模型[J].中国电机工程学报, 2012, 32(增刊):256-263. Zhu Yiying, Yao Xudong.Digital-analog hybrid model of synchronous generator with direct drive wind turbine[J].Proceedings of the CSEE, 2012, 32(supplement):256-263(in Chinese).
[18]  李东东, 陈陈.风力发电机组动态模型研究[J].中国电机工程学报, 2005, 25(3):115-119. Li Dongdong, Chen Chen.A study of dynamic model of wind turbine generator sets[J].Proceedings of the CSEE, 2005, 25(3):115-119(in Chinese).
[19]  Hansen M O L, Sørensen J N, Voutsinas S, et al.State of the art in wind turbine aerodynamics and aeroelasticity[J].Progress in Aerospace Sciences, 2006, 42(4):285-330.
[20]  Barlas T K, Kuik G A M.Review of state of the art in smart rotor control research for wind turbines[J].Progress in Aerospace Sciences, 2010, 46(1):1-27.
[21]  Larsen J W, Nielsen S R K.Non-linear dynamics of wind turbine wings[J].International Journal of Non-Linear Mechanics, 2006, 41(5):629-643.
[22]  Rasmussen F, Hansen M H.Present status of aeroelasticity of wind turbines[J].Wind Energy, 2003, 6(3):213-228.
[23]  Petersen J T, Madsen H A.Prediction of dynamic loads and induced vibrations in stall[R].Denmark:Risø National Laboratory, 1998.
[24]  Politis E S. Benchmark calculations on the NM80 wind turbine[R].Denmark:Risø National Laboratory, 2005.
[25]  Ahlstrom A.Aeroelastic simulation of wind turbine dynamics[D].Stockholm:Royal Institute of Technology, 2005.
[26]  Larsen G C, Hansen M H.Modal Analysis of Wind Turbine Blades[R].Denmark: Risø National Laboratory, 2002.
[27]  Szczotka M, Wojciech S.Application of joint coordinates and homogeneous transformations to modeling of vehicle dynamics[J].Nonlinear Dynamics, 2008, 52(4):377-393.
[28]  Urbaś A, Szczotka M, Maczynski A.Analysis of movement of the BOP crane under sea weaving conditions[J].Journal of theoretical and Applied Mechanics, 2010, 48(3):677-701.
[29]  刘延柱.高等动力学[M].北京:高等教育出版社, 2003:24-25. Liu Yanzhu.Advanced dynamics[M].Beijing:Higher Education Press, 2003:24-25(in Chinese).
[30]  李庆扬, 王能超, 易大义.数值分析[M].北京:清华大学出版社, 2008:368-370. Li Qingyang, Wang Nengchao, Yi Dayi.Numerical analysis[M].Beijing:Tsinghua University Press, 2008:368-370 (in Chinese).
[31]  Jonkman J, Cotrell J.A demonstration of the ability of RCAS to model wind turbines[R].Colorado:NREL, 2003.
[32]  Jonkman J, Buhl L.FAST user’s guide[R].Colorado:NREL, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133