全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

虚拟母线技术及其应用(二):虚拟母线负荷预测

DOI: 10.13334/j.0258-8013.pcsee.2014.07.015, PP. 1132-1139

Keywords: 虚拟母线,母线负荷预测,预测误差,聚类判据,独立预测,聚类预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

与系统负荷不同,母线负荷水平较低,波动性强,规律性弱,可预测性差,引入虚拟母线技术有利于提高母线负荷预测的工作水平与预测精度。在电网中存在一些紧密联系的连通的局部网络,其内部各母线对关键断面具有相同或相近的发电机输出功率转移分布因子(generationshiftdistributionfactor,GSDF),同时其内部母线的负荷曲线具有一定的相似性,这些母线所组成的连通局部母线组为虚拟母线。根据虚拟母线概念,提出一种新颖的聚类预测方法:虚拟母线负荷预测方法;对虚拟母线负荷预测与独立预测的精度进行了比较,分析了预测误差的形成机理,提炼出预测误差的数学表征;针对虚拟母线聚类判据对于提高预测精度的有效性进行了分析;采用河北南网的实际数据验证了虚拟母线负荷预测方法的有效性。

References

[1]  谢宏, 魏江平, 刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报, 2006, 26(22):17-22.Xie Hong, Wei Jiangping, Liu Heli.Parameter selection and optimization method of SVM model for short-term load forecasting[J].Proceedings of the CSEE, 2006, 26(22):17-22(in Chinese).
[2]  Zalewski W.Application of fuzzy inference to electric load clustering[C]//2006 IEEE Power India Conference.New Delhi, India:IEEE, 2006:5-9.
[3]  冯丽, 邱家驹.基于模糊多目标遗传优化算法的节假日电力负荷预测[J].中国电机工程学报, 2005, 25(10):29-34.Hong Li, Qiu Jiaju.Short-term load forecasting for anomalous days based on fuzzy multi-objective genetic optimization algorithm[J].Proceedings of the CSEE, 2005, 25(10):29-34(in Chinese).
[4]  余贻鑫, 吴建中.基于事例推理模糊神经网络的中压配电网短期节点负荷预测[J].中国电机工程学报, 2005, 25(12):18-23.Yu Yixin, Wu Jianzhong.CBRFNN-based short-term nodal load forecasting for middle voltage distribution networks[J].Proceedings of the CSEE, 2005, 25(12):18-23(in Chinese).
[5]  童星, 康重庆, 陈启鑫, 等.虚拟母线技术及其应用(I):虚拟母线辨识算法[J].中国电机工程学报, 2014, 34(4):596-604.Tong Xing, Kang Chongqing, Chen Qixin, et al.Virtual Bus Technique and Its Application (I): Virtual Bus Identifying Algorithm[J].Proceedings of the CSEE, 2014, 34(4):596-604(in Chinese).
[6]  康重庆, 夏清, 刘梅.电力系统负荷预测[M].北京:中国电力出版社, 2007:262-263.Kang Chongqing, Xia Qing, Liu Mei.Power system load forecasting[M].Beijing:China Electric Power Press, 2007:262-263(in Chinese).
[7]  康重庆, 赵燃, 陈新宇, 等.多级负荷预测的基础问题分析[J].电力系统保护与控制, 2009, 37(9):1-7.Kang Chongqing, Zhao Ran, Chen Xinyu, et al.Fundamental analysis of multilevel load forecasting [J].Power System Protection and Control, 2009, 37(9):1-7(in Chinese).
[8]  赵燃, 陈新宇, 陈刚, 等.母线负荷预测中的自适应预测技术及其实现[J].电网技术, 2009, 33(19):55-59.Zhao Ran, Chen Xinyu, Chen Gang, et al.Adaptive forecasting approach and its implementation in bus load forecasting[J].Power System Technology, 2009, 33(19):55-59(in Chinese).
[9]  于尔铿, 刘广一, 周京阳.能量管理系统:EMS[M].北京:科学出版社, 1998:86-89.Yu Erkeng, Liu Guangyi, Zhou Jingyang.Energy management system:EMS[M].Beijing:Science Press, 1998:86-89(in Chinese).
[10]  Kassaei H R, Keyhani A, Woung T, et al.A hybrid fuzzy, neural network bus load modeling and predication [J].IEEE Transactions on Power Systems, 1999, 14(2):718-724.
[11]  Amjady N.Short-term bus load forecasting of power systems by a new hybrid method[J].IEEE Transactions on Power Systems, 2007, 22(1):333-341.
[12]  廖峰, 刘清良, 贺辉, 等.基于改进灰色模型与综合气象因素的母线负荷预测[J].电网技术, 2011, 35(10):183-188.Liao Feng, Liu Qingliang, He Hui, et al.Bus load forecasting based on improved grey model and meteorological elements[J].Power System Technology, 2011, 35(10):183-188(in Chinese).
[13]  龙丹丽, 黎静华, 韦化.粗糙集法解多环境因素影响的母线负荷预测问题[J].电网技术, 2013, 37(5):1-6.Long Danli, Li Jinghua, Wei Hua.Solution of multi environmental factor-influenced bus Load forecasting by rough set method[J].Power System Technology, 2013, 37(5):1-6(in Chinese).
[14]  Salgado R M, Ohishi T, Ballini R.A short-term bus load forecasting system[C]//10th International Conference on Hybrid Intelligent Systems.Atlanta, USA:IEEE, 2010:55-60.
[15]  Nose-Filho K, Lotufo A D P, Minussi C R.Short-term multinodal load forecasting using a modified general regression neural network[J].IEEE Transactions on Power Delivery, 2011, 26(4):2862-2869.
[16]  潘志远, 韩学山.电网节点负荷的立体化预测方法[J].电力系统自动化, 2012, 36(21):47-52.Pan Zhiyuan, Han Xueshan.A multi-dimensional method of nodal load forecasting in power grid[J].Automation of Electric Power Systems, 2012, 36(21):47-52(in Chinese).
[17]  Hagan M T, Behr S M.The time series approach to short term load forecasting[J].IEEE Transactions on Power Systems, 1987, 2(3):785-791.
[18]  Handschin E, Dornemann C.Bus load modelling and forecasting[J].IEEE Transactions on Power Systems, 1988, 3(2):627-633.
[19]  Hippert H S, Pedreira C E, Souza R C.Neural networks for short-term load forecasting:a review and evaluation [J].IEEE Transactions on Power Systems, 2001, 16(1):44-55.
[20]  Drezga I, Rahman S.Input variable selection for ANN- based short-term load forecasting[J].IEEE Transactions on Power Systems, 1998, 13(4):1238-1244.
[21]  Drezga I, Rahman S.Short-term load forecasting with local ANN predictors[J].IEEE Transactions on Power Systems, 1999, 14(3):844-850.
[22]  Chang Chih-Chung, Lin Chih-Jen.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):27.
[23]  李元诚, 方廷健, 于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报, 2003, 23(6):55-59.Li Yuancheng, Fang Tingjian, Yu Erkeng.Study of support vector machines for short-term load forecasting [J].Proceedings of the CSEE, 2003, 23(6):55-59(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133