全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

固体氧化物燃料电池电厂并网最优效率负荷跟踪分层递阶控制策略

DOI: 10.13334/j.0258-8013.pcsee.2014.07.007, PP. 1061-1071

Keywords: 电气效率,合理运行空间,并网,分层递阶控制,固体氧化物燃料电池

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过对一个基准动态模型引入能量守恒公式,该文提出适用于固体氧化物燃料电池(solidoxidefuelcell,SOFC)静态安全运行的合理运行空间(feasibleoperatingspace,FOS)。输出有功P在FOS的一个边界上时其电气效率被证明为最大,此时氢气利用系数u和电堆温度T分别为允许的最大值和最小值。动态模型极点的分布表明:并网SOFC电厂实现最大效率负荷跟踪可采用含有一个快速和一个慢速控制系统的分层递阶控制策略。根据相对增益阵列分析,快速有功控制系统的2个输出P和u分别和燃料处理器输入天然气流量和功率调节单元的移相角?强相关,从而可以被分解为2个单输入和单输出系统。相应的比例?积分?微分控制器在设计时考虑了描述各控制环相互影响的多重模型因子。慢速温度控制系统中的T由输入氧气流量控制。由于?对T有显著的影响,可采用一个前馈控制器抑制扰动。仿真结果验证了整体控制方案的合理性。

References

[1]  Li Y H, Rajakaruna S, Choi S S.Control of a solid oxide fuel cell power plant in a grid-connected system[J].IEEE Transactions on Energy Conversion, 2007, 22(2):405-413.
[2]  Du W, Wang H F, Zhang X F, et al.Effect of grid-connected solid oxide fuel cell power generation on power systems small-signal stability[J].IET Renewable Power Generation, 2012, 6(1):24-37.
[3]  Vijay P, Tade M O, Datta R.Effect of the operating strategy of a solid oxide fuel cell on the effectiveness of decentralized linear controllers[J].Industrial and Engineering Chemistry Research, 2011, 50(3):1439-1452.
[4]  杨向真, 苏建徽, 丁明, 等.面向多逆变器的微电网电压控制策略[J].中国电机工程学报, 2012, 32(5):7-13.Yang Xiangzhen, Su Jianhui, Ding Ming, et al.Voltage control strategies for microgrid with multiple inverters [J].Proceedings of the CSEE, 2012, 32(5):7-13(in Chinese).
[5]  Ali B, Ali D.Hierarchical structure of microgrids control system[J].IEEE Transactions on Smart Grid, 2012, 3(4):1963-1976.
[6]  Bequette B W.Process control:modeling, design, and simulation[M].New Jersey:Prentice Hall, 2003:326-331.
[7]  Larminiev J, Dicks A.Fuel cell system explained[M].2nd Edition.New York:John Wiley, 2002:1-23.
[8]  Singhal S C, Kendall K, High temperature solid oxide fuel cells:fundamentals, design, and applications[M].New York:Elsvier, 2003:56-64.
[9]  Chung T D, Hong W T, Chyou Y P, et al.Efficiency analysis of solid oxide fuel cell power systems[J].Applied Thermal Engineering, 2008, 28(2):933-941.
[10]  Zhang X W, Chan S H, Li G J, et al. A review of integration strategies for solid oxide fuel cells[J]. J. Power Sources, 2010, 195(1):685-702.
[11]  翁史烈, 翁一武, 苏明, 等.熔融碳酸盐燃料电池动态特性的研究[J].中国电机工程学报, 2003, 23(7):168-172.Weng Shilie, Weng Yiwu, Su Mi, et a1.Study of molten carbonate fuel cell on thermodynamic properties [J].Proceedings of the CSEE, 2003, 23(7):168-172(in Chinese).
[12]  汤根土, 骆仲泱, 倪明江, 等.平板状阳极支撑固体氧化物燃料电池的数值模拟及性能分析[J]. 中国电机工程学报, 2005, 25(10):116-121.Tang Gentu, Luo zhongyang, Ni Minjiang, et a1.Numerical simulation and performance analysis of planar anode-supported solid oxide fuel cell [J].Proceedings of the CSEE, 2005, 25(10):116-12l (in Chinese).
[13]  王礼进, 张会生, 翁史烈, 等.内重整高温固体氧化物燃料电池建模与仿真[J].中国电机工程学报, 2007, 27(35):78-83.Wang Lijin, Zhang Huisheng, Weng Shilie, et al.Modeling and simulation of high temperature direct internal reforming solid oxide fuel cell[J].Proceedings of the CSEE, 2007, 27(35):78-83(in Chinese).
[14]  李勇汇, 朱海昱.固体氧化物燃料电池分布式电源静态运行分析[J].中国电机工程学报, 2011, 31(32):69-75.Li Yonghui, Zhu Haiyu.Steady-state analysis of solid oxide fuel cell distributed generator[J].Proceedings of the CSEE, 2011, 31(32):69-75 (in Chinese).
[15]  Cheddie D F, Munroe N D H.A dynamic 1D model of a solid oxide fuel cell for real time simulation[J].Journal of Power Sources, 2007, 171(2):634-643.
[16]  Huo H B, Wu Y X, Liu Y Q, et al.Control-oriented nonlinear modeling and temperature control for solid oxide fuel cell[J].Journal of Fuel Cell Science and Technology, 2010, 7(4):1-9.
[17]  Padullés J, Ault G W, McDonald J R.An integrated SOFC plant dynamic model for power systems simulation [J].Journal of Power Sources, 2000, 86(1-2):495-500.
[18]  Zhu Y, Tomsovic K.Development of models for analyzing the load-following performance of microturbines and fuel cells[J].Electric Power Systems Research, 2002, 62(1):1-11.
[19]  Wang C, Nehrir M H.A physically based dynamic model for solid oxide fuel cells[J].IEEE Transactions on Energy Conversion, 2007, 22(4):887-897.
[20]  Spivey B J, Edgar T F.Dynamic modeling, simulation, and MIMO predictive control of a tubular solid oxide fuel cell[J].Journal of Process Control, 2012, 22(8):1502-1520.
[21]  Yang J, Li X, Mou H G, et al.Predictive control of solid oxide fuel cell based on an improved Takagi-Sugeno fuzzy model[J].Journal of Power Sources, 2009, 193(2):699-705.
[22]  Deng Z H, Cao H L, Li X, et al.Generalized predictive control for fractional order dynamic model of solid oxide fuel cell output power[J].Journal of Power Sources, 2010, 195(24):8097-8103.
[23]  Li Y G, Shen J, Lu J H.Constrained model predictive control of a solid oxide fuel cell based on genetic optimization[J].Journal of Power Sources, 2011, 196(14):5873-5880.
[24]  Wang Q G, Ye Z, Cai W J, et al.PID Control for Multivariable Processes[M].Berlin:Springer, 2009:97-130.
[25]  Sendjaja A Y, Kariwala V.Decentralized control of solid oxide fuel cells[J]. IEEE Transactions on Industrial Informatics, 2011, 7(2):163-170.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133