全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CO2在立式螺旋管内流动沸腾换热的实验研究

DOI: 10.13334/j.0258-8013.pcsee.2014.05.012, PP. 793-799

Keywords: 流动沸腾,螺旋管,CO,换热系数,参数影响

Full-Text   Cite this paper   Add to My Lib

Abstract:

在管内径9.0mm、壁厚1.5mm、螺旋管绕径283.0mm的立式螺旋管内,对CO2流动沸腾换热特性进行实验研究。分析热流密度(q=1.4~48.0kW/m2)、质量流速(G=54.0~400.0kg/(m2?s))和运行压力(pin=5.6~7.0MPa)对内壁温分布和换热特性的影响规律。结果表明:螺旋管内壁温周向分布不均匀,单相液体以及过热蒸汽区离心力的作用使内侧母线温度最高、外侧母线温度最低,在两相沸腾区蒸汽受到浮升力作用聚集在管上部而容易发生蒸干,因此上母线温度最高,温度最低值则由离心力和浮升力的相对大小共同决定。局部平均换热系数随热流密度以及进口压力的增加而显著增加,但增大质量流速对换热系数的影响不大,表明核态沸腾是CO2在螺旋管内流动沸腾的主要传热模式而强制对流效应较弱;发现了随着热流密度增加所引起的核态沸腾强度变化以及干涸和再润湿使得换热系数随干度的变化可分成3个区域。并基于实验获得的2124个数据点拟合两相区沸腾换热关联式。

References

[1]  Jayakumar J S,Mahajani S M,Mandal J C,et al.Thermal hydraulic characteristics of air-water two-phase flows in helical pipes[J].Chemical Engineering Research and Design,2010,88(4):501-512.
[2]  Naphon P,Wongwises S.A review of flow and heat transfer characteristics in curved tubes[J].Renewable and Sustainable Energy Reviews,2006,10(5):463-490.
[3]  邵莉,许之初,韩吉田,等.卧式螺旋管内R134a沸腾两相传热特性实验研究[J].中国电机工程学报,2011,31(8):62-66.Shao Li,Xu Zhichu,Han Jitian,et al.Experimental investigation on two-phase flow boiling heat transfer of R134a in helically coiled tube[J].Proceedings of the CSEE,2011,31(8):62-66(in Chinese).
[4]  黎灿兵,刘玛,曹一家,等.低碳发电调度与节能发电调度的一致性评估[J].中国电机工程学报,2011,31(31):94-101.Li Canbing,Liu Yu,Cao Yijia,et al.Consistency evaluation of low-carbon generation dispatching and energy-saving generation dispatching[J].Proceedings of the CSEE,2011,31(31):94-101(in Chinese).
[5]  中国电力企业联合会.中国燃煤电厂大气污染物控制现状2009[M].北京:中国电力出版社,2009:2-15.China Electricity Council.The current status of air pollution control for coal-fired power plants in China 2009[M].Beijing:China Electricity Power Press,2009:2-15(in Chinese).
[6]  徐钢,田龙虎,刘彤,等.中国电力工业CO2减排战略分析[J].中国电机工程学报,2011,31(17):1-8.Xu Gang,Tian Longhu,Liu Tong,et al.Strategic analysis of CO2 mitigation in chinese power industry[J].Proceedings of the CSEE,2011,31(17):1-8(in Chinese).
[7]  陈启鑫,康重庆,夏清.碳捕集电厂的运行机制研究与调峰效益分析[J].中国电机工程学报,2010,30(7):22-28.Chen Qixin,Kang Chongqing,Xia Qing.Operation mechanism and peak-load shaving effects of carbon-capture power plant[J].Proceedings of the CSEE,2010,30(7):22-28(in Chinese).
[8]  马一太,杨俊兰,管海清,等.CO2 跨临界循环吸热过程换热性能理论分析[J].热科学与技术,2003,2(4):297-301.Ma Yitai,Yang Junlan,Guan Haiqing,et al.Theoretical analysis of heat transfer performance for heat absorbing process intrans-critical carbon dioxide cycle.Journal of Thermal Science and Technology,2003,2(4):297-301(in Chinese).
[9]  Zhang F Z,Jiang P X,Lin Y S,et al.Efficiencies of subcritical and transcritical CO2 inverse cycles with and without an internal heat exchanger[J].Applied Thermal Engineering,2011,31(4):432-438.
[10]  杨亮,丁国良,黄冬平,等.亚临界二氧化碳换热特性研究进展[J].制冷学报,2003(4):28-34.Yang Liang,Ding Guoliang,Huang Dongping,et al.Review on heat transfer of subcritical carbon dioxide[J].Journal of Refrigeration,2003(4):28-34(in Chinese).
[11]  Cheng L,Ribatski G,Wojtan L,et al.New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes[J].International Journal of Heat and Mass Transfer,2006,49(21):4082-4094.
[12]  Mastrullo R,Mauro A W,Thome J R,et al.Flow pattern maps for convective boiling of CO2 and R410A in a horizontal smooth tube:Experiments and new correlations analyzing the effect of the reduced pressure[J].International Journal of Heat and Mass Transfer,2012,55(5):1519-1528.
[13]  王淑香,张伟,徐进良,等.二氧化碳传热实验台的构建[J].流体机械,2012,40(5):71-75.Wang Shuxiang,Zhang Wei,Xu Jinliang,et al.Construction of experimental setup for heat transfer of carbon dioxide[J].Fluid Machinery,2012,40(5):71-75(in Chinese).
[14]  Taler J,Zima W.Solution of inverse heat conduction problems using control volume approach[J].International Journal of Heat and Mass Transfer,1999,42(6):1123-1140.
[15]  Ducoulombier M,Colasson S,Bonjour J,et al.Carbon dioxide flow boiling in a single microchannel-Part II:Heat transfer[J].Experimental Thermal and Fluid Science,2011,35(4):597-611.
[16]  Padovan A,Del Col D,Rossetto L.Experimental study on flow boiling of R134a and R410A in a horizontal micro fin tube at high saturation temperatures[J].Applied Thermal Engineering,2011,31(17):3814-3826.
[17]  Rogers G F C,Mayhew Y R.Heat transfer and pressure loss in helically coiled tubes with turbulent flow[J].International Journal of Heat and Mass Transfer,1964,7(11):1207-1216.
[18]  Ito H.Friction factors for turbulent flow in curved pipes[J].Journal of Basic Engineering,1959,81(2):123-134.
[19]  Dravid A N,Smith K A,Merrill E W,et al.Effect of secondary fluid motion on laminar flow heat transfer in helically coiled tubes[J].AIChE Journal,1971,17(5):1114-1122.
[20]  Mastrullo R,Mauro A W,Rosato A,et al.Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube[J].International Journal of Heat and Mass Transfer,2009,52(19):4184-4194.
[21]  Zhao L,Guo L,Bai B,et al.Convective boiling heat transfer and two-phase flow characteristics inside a small horizontal helically coiled tubing once-through steam generator[J].International journal of heat and mass transfer,2003,46(25):4779-4788.
[22]  郭萌,赵亮,毛宇飞,等.高质量流速下立式螺旋管内汽液两相传热特性研究[J].工程热物理学报,2008,29(3):423-428.Guo Meng,Zhao Liang,Mao Yufei,et al.The study in steam-water two-phase flow heat transfer at high mass velocity of flow in vertical helical coiled tube[J].Journal of Engineering Thermophysics,2008,29(3):423-428(in Chinese).
[23]  Chen C N,Han J T,Jen T C,et al.Thermo-chemical characteristics of R134a flow boiling in helically coiled tubes at low mass flux and low pressure[J].Thermochimica Acta,2011,512(1):163-169.
[24]  Chen J C.Correlation for boiling heat transfer to saturated fluids in convective flow[J].Industrial & Engineering Chemistry Process Design and Development,1966,5(3):322-329.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133