全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多智能体相关均衡算法的自动发电控制

DOI: 10.13334/j.0258-8013.pcsee.2014.04.014, PP. 620-627

Keywords: 智能体,自动发电控制,控制性能标准,相关均衡,强化学习,随机最优控制,资格迹

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种分散式多智能体均衡算法(decentralizedcorrelatedequilibriumQ(λ),DCEQ(λ))以解决新能源接入所带来的强随机环境下的互联电网自动发电控制。该算法以相关均衡概率选择机制平衡利用与探索,是一种典型的试错寻优且与模型无关的智能算法。在综合考虑分散式多智能体均衡算法在自动发电控制(automaticgenerationcontrol,AGC)系统设计适用性的基础上,改进了多智能体算法的奖励函数;以区域控制偏差(areacontrolerror,ACE)实时绝对值赋予公平系数的方法设计了均衡选择函数;在分析了3种常用资格迹算法特点的基础上,融入了SARSA(λ)资格迹以有效解决火电机组等大延时环节所带来的时间信度分配问题。IEEE标准两区域频率响应模型与南方电网模型仿真研究表明,所提出的DCEQ(λ)控制器相对于单智能体Q(λ)控制器具有更好的控制性能,在控制过程中能有效消除ACE与控制性能标准(controlperformancestandard,CPS)中的实时毛刺,显著提高互联电力系统的稳定性与鲁棒性。

References

[1]  Hassan B,Fatemeh D,Takashi H.A new intelligent agent-based AGC design with real-time application到[J].IEEE Trans. on Systems,Man,and Cybernetics-Part C:Application and Reviews,2012,42(6):994-1002.
[2]  张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.Zhang Liyin,Ye Tinglu,Xin Yaozhong,et al.Problems and measures of power grid accommodating large scale wind power[J].Proceedings of the CSEE,2010,30(25):1-9(in Chinese).
[3]  Yao M,Shoults R R,Kelm R.AGC logic based on NERC’s new control performance standard and disturbance control standard[J].IEEE Trans. on Power Systems,2000,15(2):855-857.
[4]  高宗和,滕贤亮,涂立群.互联电网AGC分层控制与CPS控制策略[J].电力系统自动化,2004,28(1):78-81.Gao Zonghe,Teng Xianliang,Tu Liqun.AGC hierarchical control of interconnected power system under control performance standard[J].Automation Electric Power Systems,2004,28(1):78-81(in Chinese).
[5]  李滨,韦化,农蔚涛.基于现代内点理论的互联电网控制性能评价标准下的AGC控制策略[J].中国电机工程学报,2008,28(25):56-61.Li Bin,Wei Hua,Nong Weitao.AGC control strategy under control performance standard for interconnected power grid based on optimization theory[J].Proceedings of the CSEE,2008,28(25):56-61(in Chinese).
[6]  Zeynelgil H L,Demiroren A,Sengor N S.The application of ANN technique to automatic generation control for multi-area power system[J].Electrical Power and Energy Systems,2002,24(5):345-354.
[7]  卓峻峰,杨小煜,周京阳,等.基于模糊预测控制的AGC自适应控制器设计[J].中国电机工程学报,2010,30(Supplement):1-5.Zhuo Junfeng,Yang Xiaoyu,Zhou Jingyang,et al.Design of adaptive AGC controller with fuzzy predictive control method[J].Proceedings of the CSEE,2010,30(Supplement):1-5(in Chinese).
[8]  伍永刚,王定一.基于遗传算法的梯级水电厂自动发电控制算法研究[J].电网技术,2000,24(3):35-38.Wu Yonggang,Wang Dingyi.A genetic algorithm based automatic generation control for cascaded hydroelectric stations[J].Power System Technology,2000,24(3):35-38(in Chinese).
[9]  Luis O,Jose Ignacio de la F,Juan L Z,et al.New design for the Spanish AGC scheme using an adaptive gain controller[J].IEEE Trans. on Power Systems,2004,19(3):1528-1537.
[10]  Bevrani H.Robust power system frequency control[M].1st ed.New York:Springer-Verlag,2009:19-24.
[11]  Imthias T P,Nagendra P S,Sastry P S.A reinforcement learning approach to automatic generation control [J].Electric Power Systems Research,2002,63(1):9-26.
[12]  Daneshfar F,Bevrani H.Load-frequency control:a GA-based multi-agent reinforcement learning[J].IET Proceedings of Generation, Transmission and Distribution,2010,4(1):13-26.
[13]  余涛,周斌,陈家荣.基于Q学习的互联电网动态最优CPS控制[J].中国电机工程学报,2009,29(19):13-19.Yu Tao,Zhou Bin,Chen Jiarong.Q-learning based dynamic optimal CPS control methodology for interconnected power systems[J].Proceedings of the CSEE,2009,29(19):13-19(in Chinese).
[14]  Yu Tao,Zhou Bin,Chan K W.Stochastic optimal relaxed automatic generation control in non-Markov environment based on multi-step Q(λ) learning[J].IEEE Trans. on Power Systems,2011,26(3):1272-1282.
[15]  余涛,周斌,陈家荣.基于多步回溯Q(λ)学习的互联电网随机最优CPS控制[J].电工技术学报,2011,26(6):179-186.Yu Tao,Zhou Bin,Chan K W.Stochastic optimal CPS control for interconnected power grids using multi-step backtrack Q(λ) learning[J].Transactions of China Electrotechnical Society,2011,26(6):179-186(in Chinese).
[16]  余涛,王宇名,叶文加,等.基于改进分层强化学习的CPS 指令多目标动态优化分配算法[J].中国电机工程学报,2011,31(19):90-96.Yu Tao,Wang Yuming,Ye Wenjia,et al.Multi-objective dynamic optimal dispatch method for CPS order of interconnected power grids using improved hierarchical reinforcement learning[J].Proceedings of the CSEE,2011,31(19):90-96(in Chinese).
[17]  Yu Tao,Zhou Bin,Chan K W,et al.R(λ) imitation learning for automatic generation control of interconnected power grids[J].Automatica,2012,48(9):2130-2136.
[18]  司风琪,顾慧,叶亚兰,等.基于混沌粒子群算法的火电厂厂级负荷在线优化分配[J].中国电机工程学报,2011,31(26):103-109.Si Fengqi,Gu Hui,Ye Yalan,et al.Online unit load economic dispatch based on chaotic-particle swarm optimization algorithm[J].Proceedings of the CSEE,2011,31(26):103-109(in Chinese).
[19]  Keiding H,Peleg B.Correlated equilibrium of games with many players[J].International Journal of Game Theory,2000,29:375-389.
[20]  Littman M.Markov games as a framework for multiagent reinforcement learning[C]//Proceedings of the Eleventh International Conference on Machine Learning.Boca Raton:ICMLA,1994:157-163.
[21]  Huang J W,Zhu Q Y,Krishnamurthy V,et al.Distributed correlated Q-learning for dynamic transmission control of sensor networks[C]//Proceedings of 2010 IEEE International Conference on Acoustics Speech and Signal Processing.Dallas:IEEE ICASSP,2010:1982-1985.
[22]  Bassar T,Olsder G J.Dynamic non-cooperative game theory[M].London:SIAM Series in Classics in Applied Mathematics,1999:45-59.
[23]  Greenwald A,Hall K,Zinkevich M.Correlated Q-learning [J].Journal of Machine Learning Research,2007(1):1-30.
[24]  张汝波.强化学习理论及应用[M].哈尔滨:哈尔滨工程大学出版社,2001:126-155.Zhang Rubo.The theory of reinforcement learning and its application[M].Harbin:Harbin Engineering University Press,2001:126-155(in Chinese).
[25]  Sutton R S,Barto A G.Reinforcement Learning:an introduction[M].Cambridge:MIT Press,1998:87-160.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133