全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于神经网络的日峰荷预测方法中日期类型系数的确定

DOI: 10.13334/j.0258-8013.pcsee.2015.22.005, PP. 5715-5722

Keywords: 负荷预测,神经网络,日期类型系数,气温累积效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于基于人工神经网络的短期负荷预测来说,日期类型(星期几)是需要考虑的重要影响因素。通常,日期类型系数被编成7位二进制码作为神经网络的输入变量。该文提出一种日期类型系数的确定方法,将日期类型系数编为1位输入变量,由于精简了输入量,从而提高了预测精度。该日期类型系数通过计算不同日期类型的负荷-气温散点图的拟合曲线、并估计不同日期类型的负荷之差得到。为了消除夏季气温累计效应对负荷的影响并得到更清晰的负荷日期特征,该文采用一种基于遗传算法的气温修正方法,对气温变量进行修正。最后通过对苏州的实际负荷数据预测验证了方法的有效性。

References

[1]  Haida T,Muto S.Regression based peak load forecasting using a transformation technique[J].IEEE Transactions on Power Systems,1994,9(4):1788-1794.
[2]  Song K-B,Baek Y-S,Hong D H,et al.Short-term load forecasting for the holidays using fuzzy linear regression method[J].IEEE Transactions on Power Systems,2005,20(1):96-101.
[3]  Chen Y,Luh P B,Guan C,et al.Short-term load forecasting:similar day-based wavelet neural networks [J].IEEE Transactions on Power Systems,2010,25(1):322-330.
[4]  Kiartzis S J,Zoumas C E,Theocharis J B,et al.Short-term load forecasting in an autonomous power system using artificial neural networks[J].IEEE Transactions on Power Systems,1997,12(4):1591-1596.
[5]  Khotanzad A,Afkhami-Rohani R,Maratukulam D.ANNSTLF-artificial neural network short-term load forecaster generation three[J].IEEE Transactions on Power Systems,1998,13(4):1413-1422.
[6]  Lu C N,Wu H T,Vemuri S.Neural network based short term load forecasting[J].IEEE Transactions on Power Systems,1993,8(1):336-342.
[7]  Hippert H S,Pedreira C E,Souza R C.Neural networks for short-term load forecasting:a review and evaluation[J].IEEE Transactions on Power Systems,2001,16(1):44-55.
[8]  Mohan Saini L,Soni M K.Artificial neural network-based peak load forecasting using conjugate gradient methods [J].IEEE Transactions on Power Systems,2002,17(3):907-912.
[9]  Chen B J,Chang M W,Lin C J.Load forecasting using support vector machines:a study on EUNITE competition 2001[J].IEEE Transactions on Power Systems,2004,19(4):1821-1830.
[10]  Ceperic E,Ceperic V,Baric A.A strategy for short-term load forecasting by support vector regression machines [J].IEEE Transactions on Power Systems,2013,28(4):4356-4364.
[11]  Drezga I,Rahman S.Input variable selection for ANN-based short-term load forecasting[J].IEEE Transactions on Power Systems,1998,13(4):1238-1244.
[12]  Wi Y-M,Joo S-K,Song K-B.Holiday load forecasting using fuzzy polynomial regression with weather feature selection and adjustment[J].IEEE Transactions on Power Systems,2012,27(2):596-603.
[13]  Kim K-H,Youn H-S,Kang Y-C.Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method[J].IEEE Transactions on Power Systems,2000,15(2):559-565.
[14]  Paparoditis E,Sapatinas T.Short-term load forecasting:the similar shape functional time-series predictor[J].IEEE Trans-actions on Power Systems,2013,28(4):3818-3825.
[15]  Wang Y,Xia Q,Kang C Q.Secondary forecasting based on deviation analysis for short-term load forecasting[J].IEEE Transactions on Power Systems,2011,26(2):500-507.
[16]  Song K-B,Ha S-K,Park J-W,et al.Hybrid load forecasting method with analysis of temperature sensitivities[J].IEEE Transactions on Power Systems,2006,21(2):869-876.
[17]  Chen G Y,Shi J T.Study on the methodology of short-term load forecasting considering the accumulation effect of temperature[C]//International Conference on Sustainable Power Generation and Supply.Nanjing:IEEE,2009:1-4.
[18]  Huang J J,Li Y H,Liu Y S.Summer daily peak load forecasting considering accumulation effect and abrupt change of temperature[C]//2012 IEEE Power and Energy Society General Meeting.San Diego,CA:IEEE,2012:1-4.
[19]  Kebriaei H,Araabi B N,Rahimi-Kian A.Short-term load forecasting with a new nonsymmetric penalty function[J].IEEE Transactions on Power Systems,2011,26(4):1817-1825.
[20]  Chu W C,Chen Y P,Xu Z W,et al.Multiregion short-term load forecasting in consideration of HI and load/weather diversity[J].IEEE Transactions on Industry Applications,2011,47(1):232-237.
[21]  Zhang R,Dong Z Y,Xu Y,et al.Short-term load forecasting of Australian National Electricity Market by an ensemble model of extreme learning machine[J].IET Generation,Transmission & Distribution,2013,7(4):391-397.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133