范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123.Fan Gaofeng,Wang Weisheng,Liu Chun,et al.Wind power prediction based on artificial neural network [J].Proceedings of the CSEE,2008,28(34):118-123(in Chinese).
[2]
王晓兰,王明伟.基于小波分解和最小二乘支持向量机的短期风速预测[J].电网技术,2010,34(1):179-184.Wang Xiaolan,Wang Mingwei.Short-term wind speed forecasting based on wavelet decomposition and least square support vector machine[J].Power System Technology,2010,34(1):179-184(in Chinese).
[3]
李俊芳,张步涵,谢光龙,等.基于灰色模型的风速——风电功率预测研究[J].电力系统保护与控制,2010,38(19):151-159.Li Junfang,Zhang Buhan,Xie Guanglong,et al.Grey predictor models for wind speed-wind power prediction [J].Power System Protection and Control,2010,38(19):151-159(in Chinese).
[4]
张翌晖,王贺,胡志坚,等.基于集合经验模态分解和改进极限学习机的短期风速组合预测研究[J].电力系统保护与控制,2014,42(10):29-34.Zhang Yihui,Wang He,Hu Zhijian,et al.A hybrid short-term wind speed forecasting model based on ensemble empirical mode decomposition and improved extreme learning machine[J].Power System Protection and Control,2014,42(10):29-34(in Chinese).
[5]
李智,韩学山,杨明,等.基于分位点回归的风电功率波动区间分析[J].电力系统自动化,2011,35(3):83-87.Li Zhi,Han Xueshan,Yang Ming,et al.Wind power fluctuation interval analysis based on quantile regression [J].Automation of Electric Power Systems,2011,35(3):83-87(in Chinese).
[6]
王彩霞,鲁宗相,乔颖,等.基于非参数回归模型的短期风电功率预测[J].电力系统自动化,2010,34(16):78-82,91.Wang Caixia,Lu Zongxiang,Qiao Ying,et al.Short-term wind power forecast based on non-parametric regression model[J].Automation of Electric Power Systems,2010,34(16):78-82,91(in Chinese).
[7]
孙建波,吴小珊,张步涵.基于非参数核密度估计的风电功率区间预测[J].水电能源科学,2013,31(9):233-235,54.Sun Jianbo,Wu Xiaoshan,Zhang Buhan.Wind power interval prediction based on non-parametric kernel density estimation[J].Water Resources and Power,2013,31(9):233-235,54(in Chinese).
[8]
Jeon J,Taylor J W.Using conditional kernel density estimation for wind power density forecasting[J].Journal of the American Statistical Association,2012,107(497):66-79.
[9]
Quan H,Srinivasan D,Khosravi A.Short-term load and wind power forecasting using neural network-based prediction intervals[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(2):303-315.
[10]
Pinson P,Tastu J.Discussion of “prediction intervals for short-term wind farm generation forecasts” and “combined nonparametric prediction intervals for wind power generation”[J].IEEE Transactions on Sustainable Energy,2014,5(3):1019-1020.
[11]
Huang G B,Wang D H,Lan Y.Extreme learning machines:a survey[J].International Journal of Machine Learning and Cybernetics,2011,2(2):107-122.
[12]
Huang G B,Zhu Q Y,Siew C -K.Extreme learning machine:Theory and applications[J].Neurocomputing,2006,70(1-3):489-501.
[13]
Huang G B.An insight into extreme learning machines:Random neurons,random features and kernels [J].Cognitive Computation,2014,6(3):376-390.
[14]
Cheng C,Tay W P,Huang G B.Extreme learning machines for intrusion detection[C]//Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN).Brisbane,QLD:IEEE,2012:1-8.
[15]
Kennedy R,Eberhart J.Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neural Networks.Perth,Australia:IEEE,1995,4:1942-1948.
[16]
Wan C,Xu Z,Pinson P,et al.Optimal prediction intervals of wind power generation[J].IEEE Transactions on Power Systems,2014,29(3):1166-1174.
[17]
章国勇,伍永刚,张洋,等.一种风电功率混沌时间序列概率区间简易预测模型[J].物理学报,2014,63(13):138801,doi:10.7498/aps.63.138801.Zhang Guoyong,Wu Yonggang,Zhang Yang,et al.A simple model for probabilistic interval forecasts of wind power chaotic time series[J].Acta Physica Sinica,2014,63(13):138801,doi:10.7498/aps.63.138801(in Chinese).
[18]
Khosravi A,Nahavandi S,Creighton D,et al.Lower upper bound estimation method for construction of neural network-based prediction intervals[J].IEEE Transactions on Neural Networks,2011,22(3):337-346.
[19]
Khosravi A,Nahavandi S.Combined nonparametric prediction intervals for wind power generation[J].IEEE Transactions on Sustainable Energy,2013,4(4):849-856.
[20]
杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.Yang Xiuyuan,Xiao Yang,Chen Shuyong.Wind speed and generated power forecasting in wind farm [J].Proceedings of the CSEE,2005,25(11):1-5(in Chinese).
[21]
Conejo A J,Plazas M A,Espinola R,et al.Day-ahead electricity price forecasting using the wavelet transform and ARIMA models[J].IEEE Transactions on Power Systems,2005,20(2):1035-1042.