全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种热工过程数据协调与显著误差检测同步处理方法

, PP. 115-121

Keywords: 热力系统,电站,数据协调,鲁棒估计,显著误差

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于冗余解约束遗传算法的鲁棒数据协调方法。引入鲁棒估计作为数据协调问题中的目标函数,不仅对测量数据随机误差的分布形式不敏感,而且抑制了显著误差对协调结果的影响。将数据协调与显著误差检测看作模型辨识与参数估计问题,采用AIC准则调整参数获得最优估计模型。针对鲁棒数据协调目标函数复杂和热工能量平衡约束可能出现隐函数的情况,结合测量冗余的概念提出冗余解约束的遗传算法求解鲁棒数据协调模型。仿真计算表明该方法能够克服显著误差的影响,给出准确的参数估计值,同时检测出系统中的显著误差。在现场热力实验的应用结果进一步验证了方法的有效性。

References

[1]  Kuehn D R,Davidson. Computer control II,mathematics of control[J]. Chemical Engineering Progress, 1961,57(6):44-47.
[2]  Lee S C,Park C E. Sensor value validation based on implicit sensor redundancy for reliable operation of power plants[J]. IEEE Transactions on Energy Conversion, 2005,20(2):373-380.
[3]  张兴民,毛玉华,朱剑峰,等. 利用图论方法进行多不良数据检测与辨识[J]. 中国电机工程学报, 1996,16(1):69-72. Zhang Xingmin,Mao Yuhua,Zhu Jianfeng,et al.Detection and identification of multi-bad data using graph theory[J].Proceedings of the CSEE ,1996,16(1)
[4]  Palme T,Fast M,Thern M. Gas turbine sensor validation through classification with artificial neural networks [J]. Applied Energy, 2011,88(11):3898-3904.
[5]  李欢欢,司风琪,徐治皋. 一种基于鲁棒自联想神经网络的传感器故障诊断方法[J]. 中国电机工程学报, 2012,32(14):116-121. Li Huanhuan,Si Fengqi,Xu Zhigao.A sensor fault diagnosis method based on robust auto-associative neural network[J].Proceedings of the CSEE,2012,32(14)
[6]  吴盈,司风琪,徐治皋. 基于样条变换偏鲁棒M-回归的电站热力过程数据检验[J]. 中国电机工程学报, 2011,31(8):114-118. Wu Ying,Si Fengqi,Xu Zhigao.Data validation of thermodynamic system in power plant based on the partial robust M-regression of splines[J].Proceedings of the CSEE,2011,31(8)
[7]  Goulding P R,Lennox B,Sandoz D J,et al. Fault detection in continuous process using multivariate statistical methods[J]. International Journal of Systems Science, 2000,31(11):1459-1471.
[8]  Li Weihua,Yue H H,Sergio Valle-Cervantes,et al. Recursive PCA for adaptive process monitoring [J]. Journal of Process Control, 2000,10(5):471-486.
[9]  Albuquerque J S,Biegler L T. Data reconciliation and gross error detection for dynamic systems[J]. AIChE, 1996,42(10):2841-2856.
[10]  Morad K,Young B R,Svrcek W Y. Rectification of plant measurements using a statistical framework[J]. Computers & Chemical Engineering, 2005,29(5):919-940.
[11]  Wang D,Romagnoli J A. A framework for robust data reconciliation based on a generalized objective function [J]. Industrial & Engineering Chemistry Research, 2003,42(13):3075-3084.
[12]  项可风,吴启光. 试验设计与数据分析[M]. 上海:上海科学技术出版社, 1989:79-80. Xiang Kefeng, Wu Qiguang.Experimental design and data analysis[M].Shanghai: Shanghai Science and Technology Press,1989:79-80.
[13]  苗宇. 数据协调与显著误差检测方法研究与应用[D]. 杭州:浙江大学, 2009.Miaoyu.Study on data reconciliation and gross error detection methods and applications[D]. Hangzhou: Zhejiang University,2009.
[14]  Hampel F R. Influence curve and its role in robust estimation[J]. JASA, 1974(69):1179-1186.
[15]  Arora N,Biegler L T. Redescending estimation for data reconciliation and parameter estimation[J]. Computers & Chemical Engineering, 2001,25(11-12):1585-1599.
[16]  Wongrat W,Srinophakun T,Srinophakun P. Modified genetic algorithm for nonlinear data reconciliation [J]. Computers & Chemical Engineering, 2005,29(5):1059-1067.
[17]  余廷芳,林中达. 部分解约束算法在机组负荷优化组合中的应用[J]. 中国电机工程学报, 2009,29(2):107-112. Yu Tingfang,Lin Zhongda.Application of float genetic algorithms-partially solved combined with punishing function in power plant units commitment problem [J].Proceedings of the CSEE,2009,29(2)
[18]  王成栋,张优云. 基于实数编码的自适应伪并行遗传算法[J]. 西安交通大学学报, 2003,37(7):707-710. Wang Chengdong,Zhang Youyun.Adaptive pseudo- parallel genetic algorithm based on real coding[J].Journal of Xi?An Jiaotong University,2003,37(7)
[19]  韩小岗,刘福国,等. 基于数据校正的锅炉减温水阀门泄漏诊断[J]. 锅炉技术, 2007,28(6):54-56. Han Xiaogang,Liu Fuguo,Ding Hao.Spray water valve leakage diagnosis in station boiler basing on probability estimates[J].Boiler Technology,28(6)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133