全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于人工鱼群与蛙跳混合算法的变压器Jiles-Atherton模型参数辨识

DOI: 10.13334/j.0258-8013.pcsee.2015.18.028, PP. 4799-4807

Keywords: Jiles-Atherton模型,变压器,直流偏磁,人工鱼群算法,蛙跳算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

变压器铁芯磁化特性的准确建模是研究变压器直流偏磁现象的关键,在使用Jiles-Atherton(J-A)模型对变压器的磁滞回线进行建模分析时,需要对变压器直流偏磁工况下J-A模型中的5个关键参数进行准确识别。提出了人工鱼群与蛙跳混合算法对J-A模型中的关键参数进行辨识,该算法将两种仿生算法有机融合,在鱼群算法寻找到最优区域后切换至蛙跳算法进行局部搜索,兼具了人工鱼群算法前期收敛迅速与蛙跳算法局部搜索准确的优势。分别将所提混合算法及多种现有识别算法应用于数值仿真算例与变压器直流偏磁实测曲线的参数识别,结果表明基于人工鱼群与蛙跳混合算法得到的变压器磁滞回线与实测曲线吻合良好,且具有识别精度高和计算效率高的优点,验证了该算法在变压器J-A模型参数识别中的有效性,进而可以应用于对变压器直流偏磁下运行特性的准确分析。

References

[1]  Naghizadeh R A,Vahidi B,Hosseinian S.Modeling of inrush current in transformers using inverse Jiles-Atherton hysteresis model with a Neuro-shuffled frog-leaping algorithm approach[J].IET Electrical Power Applications,2012,6(9):727-734.
[2]  皇甫成,阮江军,张宇,等.变压器直流偏磁的仿真研究及限制措施[J].高电压技术,2006,32(9):117-120.Huang Fucheng,Ruan Jiangjun,Zhang Yu,et al.DC magnetic bias induced current effects on transformer and restricting methods[J].High Voltage Engineering,2006,32(9):117-120(in Chinese).
[3]  李琼林,邹磊,刘会金,等.电力变压器谐波损耗仿真计算与实验研究[J].电网技术,2013,37(12):3521-3527.Li Qionglin,Zou Lei,Liu Huijin,et al.Simulation calculation and experimental research on harmonic losses in power transformers[J].Power System Technology,2013,37(12):3521-3527(in Chinese).
[4]  Jiles D,Thoelke J,Devine M.Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis [J].IEEE Transactions on Magnetics,1992,28(1):27-35.
[5]  李晓萍,文习山,蓝磊,等.单相变压器直流偏磁实验与仿真[J].中国电机工程学报,2007,27(9):33-40.Li Xiaoping,Wen Xishan,Lan Lei,et al.Test and simulation for single-phase transformer under DC bias [J].Proceedings of the CSEE,2007,27(9):33-40(in Chinese).
[6]  曹林,何金良,张波.直流偏磁状态下电力变压器铁芯动态磁滞损耗模型及验证[J].中国电机工程学报,2008,28(24):141-146.Cao Lin,He Jinliang,Zhang Bo.Dynamic hysteresis loss model of power transformer under DC current biasing and its verification[J].Proceedings of the CSEE,2008,28(24):141-146(in Chinese).
[7]  Toman M,Stumberger G,Dolinar D.Parameter identification of the Jiles-Atherton hysteresis model using differential evolution[J].IEEE Transactions on Magnetics,2008,44(6):1098-1101.
[8]  Coelho S,Guerra F A.Multiobjective exponential particle swarm optimization approach applied to hysteresis parameters estimation[J].IEEE Transactions on Magnetics,2012,48(2):283- 286.
[9]  Leite J V,Avila S L,Batistela N J,et al.Real coded genetic algorithm for Jiles-Atherton model parameters identification[J].IEEE Transactions on Magnetics,2004,40(2):888-891.
[10]  Grimaldi D,Michaeli L,Palumbo A.Automatic and accurate evaluation of the parameters of a magnetic hysteresis model[J].IEEE Transactions on Instrumentation and Measurement,2000,49(1):154-160.
[11]  Naghizadeh R,Vahidi B,Hosseinian S H.Parameter identification of Jiles-Atherton model using SFLA[J].The International Journal of Computation and Mathematics in Electrical and Electronic Engineering(COMPEL),2012,31(4):1293-1309.
[12]  Fulginei F R,Salvini A,Softcomputing for the identification of the Jiles-Atherton model parameters [J].IEEE Transactions on Magnetics,2005,41(3):1100-1108.
[13]  Shuying Cao,Bowen Wang,Rongge Yan,et al.Optimization of hysteresis parameters for the Jiles Atherton model using a genetic algorithm[J].IEEE Transactions on Applied Superconductivity,2004,14(2):1157-1160.
[14]  易新兵,杨凯.复合混沌-人工鱼群混合算法的改进及性能研究[J].计算机工程与科学,2013,35(8):89-95.Yi Xinbing,Yang Kai.Improvement and performance research of hybrid algorithm based on compound chaotic- artificial fish swarm[J].Computer Engineering & Science,2013,35(8):89-95(in Chinese).
[15]  葛宇,王学平,梁静.自适应混沌变异蛙跳算法[J].计算机应用研究,2011,28(3):945-947.Ge Yu,Wang Xueping,Liang Jing.Adaptive chaotic mutation shuffled frog leaping algorithms[J].Application Research of Computers,2011,28(3):945-947(in Chinese).
[16]  Jiles D C,Atherton D L.Theory of ferromagnetic hysteresis[J].Journal of Magnetism and Magnetic Materials,1986,61(1):48-60.
[17]  Jiles D C.A Self-consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis[J].IEEE Transactions on Magnetics,1992,28(5):2602-2604.
[18]  李晓磊.一种新型的智能优化方法-人工鱼群算法[D].杭州:浙江大学,2003.Li Xiaolei.A new intelligent optimization method - artificial fish school algorithm[D].Hangzhou:Zhejiang University,2003(in Chinese).
[19]  Eusuff M,Lansey K.Optimization of water distribution network design using the shuffled frog leaping algorithm [J].Journal of Water Resources Planning and Management,2003,129(3):210-225.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133