全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于大气动力模型的多风电场出力场景生成方法

DOI: 10.13334/j.0258-8013.pcsee.2015.18.003, PP. 4581-4590

Keywords: 多风电场,风电场出力场景,时空相关性,风速联合概率分布,大气动力模型,扩展卡尔曼滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

具有时空相关性的多风电场未来出力的场景,在大规模风电接入下的日前、日内滚动经济调度问题中有着重要的应用。文章基于物理机理的解析模型提出一种生成多风电场未来时段出力场景的方法。该方法以大气运动方程和风速降尺度方程为基础,建立了描述风电场群高空大气与地表风运动关系的随机动态系统。结合地面实时量测风速信息,采用扩展卡尔曼滤波算法对系统状态进行估计,并对各风电场未来风速的联合概率分布进行预测。再利用蒙特卡洛仿真、风电功率曲线和场景约简技术生成具有时空相关性的各风电场未来时段的出力场景。算例中以美国密苏里州四个风电场为例进行仿真测试,并将该方法与高斯连接函数法进行对比和评价,验证了所提方法的有效性。

References

[1]  周松林,茆美琴,苏建徽.风电功率短期预测及非参数区间估计[J].中国电机工程学报,2011,31(25):10-16.Zhou Songlin,Mao Meiqin,Su Jianhui.Short-term forecasting of wind power and non-parametric confidence interval estimation[J].Proceedings of the CSEE,2011,31(25):10-16(in Chinese).
[2]  刘克文,蒲天骄,周海明,等.风电日前发电功率的集成学习预测模型[J].中国电机工程学报,2013,33(34):130-135.Liu Kewen,Pu Tianjiao,Zhou Haiming,et al.A short term wind power forecasting model based on combination algorithms[J].Proceedings of the CSEE,2013,33(34):130-135(in Chinese).
[3]  刘兴杰,岑添云,郑文书,等.基于模糊粗糙集与改进聚类的神经网络风速预测[J].中国电机工程学报,2014,34(19):3162-3169.Liu Xingjie,Cen Tianyun,Zheng Shuwen,et al.Neural network wind speed prediction based on fuzzy rough set and improved clustering[J].Proceedings of the CSEE,2014,34(19):3162-3169(in Chinese).
[4]  薛禹胜,雷兴,薛峰,等.关于风电不确定性对电力系统影响的评述[J].中国电机工程学报,2014,34(29):5029-5040.Xue Yusheng,Lei Xing,Xue Feng,et al.A review on impacts of wind power uncertainties on power systems[J].Proceedings of the CSEE,2014,34(29):5029-5040(in Chinese).
[5]  孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,29(4):41-47.Sun Yuanzhang,Wu Jun,Li Guojie,et al.Dynamic economic dispatch considering wind power penetration based on wind speed forecasting and stochastic programming[J].Proceedings of the CSEE,2009,29(4):41-47(in Chinese).
[6]  吴雄,王秀丽,李骏,等.风电储能混合系统的联合调度模型及求解[J].中国电机工程学报,2013,33(13):10-17.Wu Xiong,Wang Xiuli,Li Jun,et al.A joint operation model and solution for hybrid wind energy storage systems[J].Proceedings of the CSEE,2013,33(13):10-17(in Chinese).
[7]  王彩霞,鲁宗相.风电功率预测信息在日前机组组合中的应用[J].电力系统自动化,2011,35(7):13-18.Wang Caixia,Lu Zongxiang.Unit commitment based on wind power forecast[J].Automation of Electric Power Systems,2011,35(7):13-18(in Chinese).
[8]  Meibom P,Barth R,Hasche B,et al.Stochastic optimization model to study the operational impacts of high wind penetrations in Ireland[J].IEEE Transactions on Power Systems,2011,26(3):1367-1379.
[9]  Siahkali H,Vakilian M.Stochastic unit commitment of wind farms integrated in power system[J].Electric Power Systems Research,2010,80(9):1006-1017.
[10]  Luh P B,Yu Y W,Zhang B J,et al.Grid integration of intermittent wind generation:a Markovian approach[J].IEEE Transactions on Smart Grid,2014,5(2):732-741.
[11]  黎静华,孙海顺,文劲宇,等.生成风电功率时间序列场景的双向优化技术[J].中国电机工程学报,2014,34(16):2544-2551.Li Jinghua,Sun Haishun,Wen Jinyu,et al.A two-dimensional optimal technology for constructing wind power time series scenarios[J].Proceedings of the CSEE,2014,34(16):2544-2551(in Chinese).
[12]  Lange M.On the uncertainty of wind power predictions-analysis of the forecast accuracy and statistical distribution of errors[J].Journal of Solar Energy Engineering,2005,127(2):177-184.
[13]  Wu J,Guan X H,Zhou X X,et al.Estimation and characteristic analysis of aggregated generation of geographically distributed wind farms[C]//Proceedings of 2011 IEEE Power and Energy Society General Meeting.San Diego,CA:IEEE,2011:1-6.
[14]  Ma X Y,Sun Y Z,Fang H L.Scenario generation of wind power based on statistical uncertainty and variability[J].IEEE Transactions on Sustainable Energy,2013,4(4):894-904.
[15]  Pinson P,Girard R.Evaluating the quality of scenarios of short-term wind power generation[J].Applied Energy,2012,96:12-20.
[16]  王澄海,隆霄,杨毅.大气数值模式及模拟[M].北京:气象出版社,2011:1-12.Wang Chenghai,Long Xiao,Yang Yi.Atmospheric numerical model and simulation[M].Beijing:China Meteorological Press,2011:1-12(in Chinese).
[17]  Kalnay E.Atmospheric modeling,data assimilation and predictability[M].Cambridge:Cambridge University Press,2002:63-100.
[18]  Li P,Wu J,Guan X H,et al.Probabilistic forecasting of aggregated generation for regional wind farms with geographical dynamic model[C]//Proceedings of 2012 IEEE Power and Energy Society General Meeting.San Diego,CA:IEEE,2012:1-8.
[19]  Salameh T,Drobinski P,Vrac M,et al.Statistical downscaling of near-surface wind over complex terrain in southern France[J].Meteorology and Atmospheric Physics,2009,103(1-4):253-265.
[20]  Curry C L,Van der Kamp D,Monahan A H.Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain.I.Predicting wind speed[J].Climate Dynamics,2012,38(7-8):1281-1299.
[21]  Achberger C,Ekström M,Bärring L.Estimation of local near-surface wind conditions-a comparison of WASP and regression based techniques[J].Meteorological Applications,2002,9(2):211-221.
[22]  刘永和,郭维栋,冯锦明,等.气象资料的统计降尺度方法综述[J].地球科学进展,2011,26(8):837-847.Liu Yonghe,Guo Weidong,Feng Jinming,et al.A summary of methods for statistical downscaling of meteorological data[J].Advances in Earth Sciences,2011,26(8):837-847(in Chinese).
[23]  Landberg L.Short-term prediction of local wind conditions[J].Journal of Wind Engineering and Industrial Aerodynamics,2001,89(3-4):235-245.
[24]  de Rooy W C,Kok K.A combined physical-statistical approach for the downscaling of model wind speed[J].Weather and Forecasting,2004,19(3):485-495.
[25]  Kalnay E,Kanamitsu M,Kistler R,et al.The NCEP/NCAR 40-year reanalysis project[J].Bulletin of the American Meteorological Society,1996,77(3):437-471.
[26]  Burton T,Sharpe D,Jenkins N,et al.Wind energy handbook[M].New York:John Wiley & Sons,Inc.,2001:11-21.
[27]  Bar-Shalon Y,Li X R,Kirubarajan T.Estimation with applications to tracking and navigation:theory algorithms and software[M].New York:John Wiley & Sons,Inc.,2001:371-395.
[28]  Tanizaki H.Nonlinear filters:estimation and applications[M].New York:Springer-Verlag,1996:37-42.
[29]  Heitsch H,Römisch W.Scenario reduction algorithms in stochastic programming[J].Computational Optimization and Applications,2003,24(2-3):187-206.
[30]  Wind Integration Datasets[OB/OL].Golden,Colorado:National Renewable Energy Laboratory.http://www.Nrel. gov/electricity/transmission/eastern_wind_methodology.html.
[31]  Pinson P,Madsen H,Nielsen H A,et al.From probabilistic forecasts to statistical scenarios of short-term wind power production[J].Wind Energy,2009,12(1):51-62.
[32]  黎静华,文劲宇,程时杰,等.考虑多风电场出力Copula相关关系的场景生成方法[J].中国电机工程学报,2013,33(16):30-36.Li Jinghua,Wen Jinyu,Cheng Shijie,et al.A scene generation method considering copula correlation relationship of multi-wind farms power[J].Proceedings of the CSEE,2013,33(16):30-36(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133